DOI QR코드

DOI QR Code

복엽기 배치의 복식 플랩핑 에어포일들의 추력 특성

Thrust Characteristics of Dual Flapping Airfoils in a Biplane Configuration

  • 발행 : 2005.07.01

초록

비정상 패널법을 이용하여 복엽기 형태 배치의 복식 플랩핑 에어포일들에 대한 후류의 형상 및 추력 특성을 연구하였다. 에어포일들에서 발생하는 후류 형상은 와핵 모델, 와핵 첨가법 그리고 4계 Runge-Kutta 법을 사용하여 계산하였다. 해석 결과는 유동 가시화, 엄밀해 그리고 전산 해석 결과와 비교하여 검증하였다. 복엽기 배치의 에어포일의 경우, 두께 및 캠버는 추력을 감소시키는 효과가 있었다. 플런징과 피칭 운동들 사이의 위상차가 90도 및 120도 일 때 최대 추력이 발생하였다. 플런지 속도 및 피치 크기가 클수록 추력은 증가하였다. 에어포일 사이의 거리가 감소할수록 추력은 증가하나, 0.6c 이하로 가까워질 경우 추력은 감소하였다.

The wake patterns and thrust characteristics of dual flapping airfoils in a biplane configuration are investigated using an unsteady panel method. To trace complicated wake shapes behind airfoils, a core addition scheme, a vortex core model, and the fourth order Runge-Kutta convection scheme are employed. Present results are verified by comparing them with flow visualization, exact solution and published computed results. The thickness and camber of thick airfoils has an effect of decreasing thrust. The airfoils produce maximum thrust when the phase angles between plunging and pitching motions are both 90 and 120 degrees. Thrust increases as the plunge velocity is increased, which is also found as the pitch amplitude is stepped up. Thrust decreases when the distance between the airfoils is less than 0.6c.

키워드

참고문헌

  1. Rozhdestvensky, K. V. and Ryzhov, V. A., 'Aerohydrodynarnics of Flapping-wing Propulsors', Progress in Aerospace Sciences, Vol. 39, 2003, pp. 585-633
  2. Ho, S., Nassef, H., Pornsinsirirak, N., Tai, Y-C, and Ho, C-M., 'Unsteady Aerodynamics and Flow Control for Flapping Wing FlLyers', Progress in Aerospace Sciences, Vol. 39, 2003, pp. 635-681 https://doi.org/10.1016/j.paerosci.2003.04.001
  3. Liu, H. and Kawachi, K., 'A Numerical Study of Insect Flight', Jounal of Computational Physics, Vol. 146, 1998, pp. 124-156 https://doi.org/10.1006/jcph.1998.6019
  4. von Karman, T. and Burgers, J. M., 'General Aerodynamic Theory - Perfect Fluids', Aerodynamic Theory, edited by W. F. Durand, Division E, Vol. 2, Julius-Springer, Berlin, 1943
  5. Birnbaum. W., 'Der Schlagflugelpropeller und die Kleinen Schwingungen Elastisch Befestiger Tragfluegel', Zeitschrift fur Flugtechnik und Motorluftschiffahrt, Vol. 15, 1924, pp. 128-134
  6. Theodorsen, T., 'General Theory of Aerodynamic Instability and the Mechanism of Flutter', NACA Rept. 496, 1935
  7. Garrick, I. E., 'Propulsion of a Flapping and Oscillating Airfoil', NACA Rept. 567, 1936
  8. Gorelov, DN. and Kulyaev RL., 'Nonlinear Problem for Unsteady Flow of Incompressible Fluid past a Thin Airfoil', Izvstia AN SSSR Ser.: Mekhanika zhidkosti i gaza, Vol. 6, 1971, pp. 38-48
  9. Jones, K. D., Dohring, C. M. and Platzer, M. F., 'Wake Structures behind Plunging Airfoils: A Comparison of Numerical and Experimental Results', AIAA Paper No. 96-0078, Jan. 1996
  10. Jones, K. D. and Platzer, M. F., 'Numerical Computation of Flapping-Wing Propulsion and Power Extraction', AIAA Paper No. 97-0826, Jan. 1997
  11. Jones, K. D. and Platzer, M. F., 'An Experimental and Numerical Investigation of Flapping-Wing Propulsion', AIAA Paper No. 99-0995, Jan. 1999
  12. Jones, K. D., Castro, B. M., Mahmoud, O., and Platzer, M. F., 'A Numerical and Experimental Investigation of Flapping-Wing Propulsion in Ground Effect', AIAA Paper No. 2002-8666, Jan. 2002
  13. Zbikowski, K, 'On Aerodynamic Modelling of an Insect-like Flapping Wing in Hover for Micro Air Vehicles', Philosophical Transactions of the Royal Society of London Series A, Vol. 360, 2002, pp. 273-290
  14. Jones, K. D., Bradshaw, C. J., Papadopoulos, J. and Platzer, M.F., 'Improved Performance and Control of Flapping-Wing Propelled Micro Air Vehicles', AIAA Paper No. 2004-0399, Reno, Nevada, Jan. 2004
  15. 안준성, 한철희, 김창희, 조진수, '진동하는 평판들에서의 추진', 한국항공우주학회지, 제 32권 제 10호, 2004, pp. 118-126
  16. Tuncer, I. H. and Platzer, M. F., 'Computational Study of Flapping Airfoil Aerodynamics', Journal of Aircraft, Vol. 37, No.3, 2000. pp. 514-520 https://doi.org/10.2514/2.2628
  17. Tuncer, I. H. and Mustafa Kaya, 'Thrust Generation Caused by Flapping Airfoils in a Biplane Configuration', Journal of Aircraft, Vol. 37, No.3, 2003. pp. 509-515
  18. Young, J., Lai, J.C.S., Kaya, M. and Tuncer, I. H., 'Thrust and Efficiency of Propulsion by Oscillating Foils', 3rd International Conference on Computational Fluid Dynamics, Toronto, July 12 - 16, 2004
  19. Wang, Z. J., 'Vortex Shedding and Frequency Selection in Flapping Flight', Journal of Fluid Mechanics, Vol. 410, 2000, pp. 323-341 https://doi.org/10.1017/S0022112099008071
  20. 장조원, 윤용현, 탄명훈, '진동하는 에어포일 근접후류에서의 캠버 효과', 한국항공우주학회지, 제 29권 제8호, 2001, pp. 57-65
  21. McMichael, J. M. and Francis, M. S, 'Micro Air Vehicles toward a New Dimension in Flight', USAF, DARPA ITO Document, July. 1996
  22. Lighthill, M. J., 'Aquatic Animal Propulsion of High Hydromechanical Efficiency,' Journal of Fluid Mechanics, Vol. 44, 1970, pp. 265-301 https://doi.org/10.1017/S0022112070001830
  23. Triantafyllou, G. S., Triantafyllou, M. S. and Grosenbaugh, M. A., 'Optimal Thrust Development in Oscillating Foils with Application to Fish Propulsion', Journal of Fluids and Structures, Vol. 7, 1993, pp. 20S-224 https://doi.org/10.1006/jfls.1993.1012
  24. 'A Penguin Propulsion Project: The Flipper Proves Mightier Than the Propeller', The Mechanical Advantage, Vol. 6, No. 2.
  25. Hinton, D. A, 'A Candidate Wake Vortex Strength Definition for Application to the NASA Aircraft Vortex Spacing System', NASA TM-110343, Sep. 1997
  26. 한철희, 최근형, 조진수, '이산와류법을 이용한 비정상 후류의 수치적 모사', 대한 기계학회 논문집 B권, 제 25권 제 3호, 2001, pp.397-404
  27. 최근형, 한철희, 조진수, '이산와류법을 사용한 Tandem 날개의 동적 지면효과 연구', 한국항공우주학회지, 제 29권 제 1호, 2001, pp. 25-32
  28. Katz, J. and Plotkin, A., 'Low-Speed Aerodynamics', 2nd Ed., Cambridge University Press, 2001, pp. 369-377
  29. Hess, J. L. and Smith, A. M. O., 'Calculation of Potential Flow about Arbitrary Bodies', Progress in Aeronautical Sciences, Vol. 8, Pergamon, Oxford, England, UK, 1966, pp. 1-138