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Combined and Product Array Approaches in
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Jae Hoon Lee” - Sung Hyun Park™

* Department of Statistics, Seoul National University

Key Words : Robust Parameter Design, Product Array, Combined Array, Multiple Responses,

Simultaneous Optimization

Abstract

Robust parameter design is an off-line production technique for reducing variation and improving the quality
of products and processes by using product arrays. However, the use of the product arrays usually requires
a large number of runs. To overcome the drawback of the product array, the combined array can be used.
Also optimizing multiple responses is increasingly important in industry. Using simultaneous optimization
measures, we can deal with the multiple response case. In this paper we compare the simultaneous opti—
mization using the Taguchi's product array with using the combined array. And models possible to set on
combined arrays are also investigated and compared with the cases of product arrays.

1. Introduction and Review of
Literature

1.1 Product & Combined Array

Robust parameter design (RPD) has been suc-—
cessfully used to improve the quality of products
since the mid-1980s (see Taguchi, 1986 ; Wu,
1985 ; Nair, 1992). The technique consists of
determining the levels of some set of control-
lable factors that reduce the sensitivity of the
quality characteristic in the process to varia—
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tions in another set of uncontrollable or noise
factors, thus increasing the robustness of the
quality characteristic. Taguchi has highlighted
the need for considering both mean and variance
of the characteristic of interest. Through the ro-
bust parameter design method and the use of SN
ratio, Taguchi has developed a total package for
approaching these problems. But his approach
has many disadvantages and draws much criticism.

There have been efforts at integrating Taguchi’s
important notion of heterogeneous variability
with the standard experimental design and mod-
eling technology provided by response surface
methodology (RSM). This approach was first
proposed by Welch et al. (1990). They combined
control and noise factors in a single design ma-
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trix, which we call a combined array. Noise fac-
tors are treated as control factors in a combined
array. The run-size saving allowed by the com-
bined array format comes from the flexibility to
estimate their effects. The combined array de-
sign can reduce the total run-size extent to half
or one third or more compared with that of the
product array. And the combined array allows
one to use dual response surface modeling. Also
the combined array allows a sequential in-
vestigation. But results using the combined ar-
ray approach depend critically on how well the
model fits.

1.2 Multiple Response Optimization

One limitation of Taguchi's method is that the
method can only be applied to optimize single
response problems. However, optimizing multi-
ple responses are increasingly important in in-
dustry today. Moreover, correlations among mul-
tiple responses always exist and these correla—
tions may create conflicts in determining optimal
parameter settings when employing the Taguchi’'s
method to optimize each response individually.
For instance, assume a product has two quality
characteristics, say » and »,, with three control
factors, A, B, and C, and with each factor having
three levels (low, medium, and high). If the opti—
mal level combination for ¥ is A=low, B =low,
and C=high and the optimal level combination
for y, is A =1low, B = high, and C = medium, then
the optimal setting levels for control factors B
and C conflict in these two optimal combinations.
Vining and Myers (1990) has some discussions
on this matter. In optimization of multiple re-
sponses, Taguchi et al. (2001) proposed a new
method using MAHALANOBIS distance.

1.3 Second Order Polynomial Model
in the Combined Array Approach

In the combined array, if the quadratic terms

about control factors(z,’s) and the linear terms
about noise factors(z,’s) are included in the
model, we can set on the polynomial regression
model, which may be expressed as

y.(xs2)= B, +xB, +xX'B,x+z’y, +z'D,;x+¢, (1)

where i=1, 2, -7, X= (zl, Tyt 331'): 7= (zl, Zgy
z ), B, 1S Ix1, v, 18 mx1, Bj=B, is IxI, D is mx!
and ¢, is the random error associated with the
response(See Box and Jones, 1990).

Let & be the number of experimental runs and
model (1) can be expressed in matrix notation
as

y,=X0, +g,, i=12,..,r,

where y, is and Nx1 vector of observations on
the ith response, X is an N X p matrix of known
constants, 6, is px1 matrix of parameters, p is
number of parameters, and ¢, is a vector of ran-
dom errors associated with the ith response. An
unbiased estimator of the rxr variance-co-
variance matrix X is given by

Y, -XX'X) ' X1Y
N-p ,

2:

where Y={y;,y; "~ %) wxr, and Ly is identity matrix
of order Nxw.

Among the various simultaneous—optimization
measures, we will use two kinds of measure, P,
and P, (which were partially discussed by Kwon
(1994)). To define these measures, we assume
the following fitted model by the least square
method.

$,(X,2) =by, +xb, +X' B, x+2r, +2’D,x, i=12,..,r (2)

The noise variables z,’s are not controllable
and they are random variables. In the absence
of other knowledge, z,'s would be usually uni-
formly distributed over R,. By means of proper
linear transformations on x and z, we usually
define the R, and R, by
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R ={x:-1<x<+Li=12K,}} and
R, ={z:-1<z <+Li=12K ,m},

Then the mean response can be obtained as

(%)= [ §,(02)p(2)de

=b, +Xb, +X'B,x ,i=12,..,r 3
Also, we can find the variance response as

5,00 = [ [9,002) =i, (Y pla)dz

= +D,x)(r,+D,x) Li=12,..r. @D

m(x) and v(x) denote (m,(x),..,m,(x)) and
(% (X),....0,(x))’, respectively. The P, measure
optimizes m(x) for the target value r, while con-
straining ¥(x) over the region of interest R.. A

distance function of r(x) for the target r may
be expressed as

Dlmh(x), ] = [((x) ~ 1) {Far[(t(x)]}

(i (x)-1)]'"?
An unbiased estimator of Var[m(x)] is given by
Var[i(x)] = ['(x)(X'X),'h(x)]Z

where W) =(x,A ,x,x A ,x7, xx,,A ,x %), (XX)*
is pXp, XX)' is gXq, ¢=0+)(I+2)/2. Here
(XX);'is the submatrix of (X'X)" as follows

xx" =(

X'X), XX
XX, XX

where (X'X);', (XX)y, X'X); and (X'X);' are
submatrices of (X’X)'. And calculating P,, we
generally consider variance constraints.

The P, measure can be written as

_m@-1E @) - 1)
W ()(XX), h(x)

M

subject to v(x)</,i=12,Ar.
If we have a prior knowledge about m(x), it

is possible to minimize ¥(x) while constraining

m(x). Let

$x)- m}zn&-(x)

17:(x)= i=12L ,r

max@(x)—minﬁi(x) ’
XeR, xR,
Then the F, measure is

b, = % ;‘3: (x)
m, < (x)<m, :target-is—best
subject to {AL(x) 2 m, . larger—the—better
An(x)<m; . smaller-the-better

where m, is the minimum acceptable value of
m,(x), and m, is the maximum acceptable value

of m,(x).

2. Possible Designs in the
Combined Array

In most cases, it is enough to consider 2~6
control variables and 1~3 noise variables.
According to the number of control variables
and the number of noise variables, the total
number of parameters used in the model
changes. Then the form of design for setting on
the model will be also changed. In this section,
we will investigate these forms of design possi—
ble to use in the combined array, and compare
with the cases of the product array.

2.1 Selection of Orthogonal Arrays

If the combined array consists of [ control
variables, and m noise variables, what is the to-
tal number of parameters used in the model (1)?
To calculate it, we can put one term in intercept,
! terms in xB,, [(I+1)/2 terms in XB,x, m
terms in zy, and ! m terms in 2D;x. So the total
number of parameters used in the model is 1+ /
+ 1+ D/2+ m+Im=(1+2m+2)(I+ 1)/2.

There must be more number of necessary ex-




96/0|M & - Htd 3

CHEM SAZMEE % SeiPn DAy Fae vmedT

periments than the number of parameters in or-
der to estimate the parameters and the error
term. Within this constraint, we can decide the
most economic design of combined arrays. Note
that the control variable should be allocated in
the column of at least 3 levels, but the noise var~
lable can be allocated in the column of at least
2 levels. We use standard orthogonal arrays and
mixed orthogonal arrays for the design(See
Park, 1996). The orthogonal array considered
here are L,(3'), L, (2" x37), L,,(3'3), L, (2" x3'%),
Lo (2 x33), L,,(2'x3%), and L (3').

For example, consider the cases where the
number of noise variables is only 1.

1) If there are two control variables, the num-—
ber of parameters is 9, and the most eco-
nomic design is L, (2! x3%).

ii) If there are three control variables, the
number of parameters is 14, and the most
economic design is (2! x3").

iii) In this way if there are four, five, and six
control variables, the number of parameters
is 20, 27 and 35, respectively. Considering
the number of parameters we can easily de-
cide the most economic design in each case.

Note that the usual number of levels for noise

variables is two or three. For each case, we in-
vestigate how to allocate the control and noise
variables. In each case, we select the most eco-
nomic orthogonal array (OA) for the combined
array and compare it with the OA for the prod-
uct array. In the following <Table 1>~<Table
4>, C, N, n, p indicates control variable, noise
variable, number of total experiments, and num-
ber of parameters, respectively.

Note that in the case of combined array, we
need to investigate the number of parameters
because we use modeling, but in the case of
product array, we don't have to consider it be-
cause there are no model fitting in product
array.

<{Table 2> Product arrays for the 3-level
noise variables (no model fitting)

4 # of N

of 1 2 3
Cln| oA |n| oA |n| oa
2127 | L3 | 81| L,3%) | 81| ZLyBY)
3127 L3 | 81| Ly(3) | 81 | Ly(3%)
4|27 | L3 | 81| IL,(8) 81| L,3Y)

5| 54 (L2 x37)| 162 | L,,(2' x37)| 162 |L,4(2! x37)
6 | 54 |L,(2'x37)| 162 |L,5(2' x37)| 162 | L5 (2 x37)

<Table 1> Combined arrays for the 3-level noise variables (model fitting)

# of N
# of C 1 2 3
n(p) OA n(p) OA n(p) OA
2 18(9) L5(2' x37) 18(12) L(2' x37) 18(15) Ly (2" <37)
3 18(14) Ly (2 x37) 27(18) L,,(3%) 27(22) L,,(3%)
L. (911 x312)
13 13 36
4 27(20) L, (3%) 27(25) L,,(3%) 36(30) or Ly, (@ x3)
L36 (211 ><312) L36 (211 ><312) 0
L (3
5 36(27) oF Lyy(2x3) 36(33) or Ly,(@x3%) 81(39) 61 (3*)
L, (2 <3'%) 10 40
L Lo, (3
6 36(35) or L, ( 3 81(42) s1(3°) 81(49) 51 (31)
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<Table 3> Combined arrays for the 2-level noise variables (model fitting)

# of N
# of C 1 2 3
n(p) OA n(p) OA n(p) OA
1 7 1 7
2 18(9) Ly(2'x3) 18(12) Ls2>3) 18(15) L,2x3)
(dummy-level) (combination)
43 L,(3%
3 18(14) Ly(2'x37) 27(18) LH,( ). 27(22) (combination,
(combination)
dummy-level)
4 27(20) G 27(25) LG9 36(30) L)
(dummy-level) (combination) or Lis(2x3%)
5 36(27) L, (2"x3"%) 36(33) L (2''x3%) 5139) L, (2'x3)
or Lis(2'x3"%) or Lix(2°x3") (combination)
6 36(35) L@ 54(42) Ly, (2'%3%) 54(49) Ly, (2'x3%)
or Ls(2’x3%) (dummy-level) (combination)

<{Table 4> Product arrays for the 2-level
noise variables (no model fitting)

# # of N

of 1 2 3
Cln OA n OA n OA
2 |18 LBY 36| LGB |36 L(3Y
3|18 LBY 36| LEGY |36 L3Y
4 [ 18| LGBYY |36| L@BY |36 LG3Y
5 | 36 |L(2'x37)| 72 | L(2'x37) | 72 | Le(2'x3")
6 | 36 |L(2'x3")| 72 | Ls(2'x3") | 72 |L4(2'x37)

2.2 Comparison between Combined
Array and Product Array

The run-size of the combined array is gen-—
erally smaller than that of the product array. In
<Table 1> and <Table 2>, the run-size is the same
in one case that the number of control variable
is 4 and the number of noise variable is 1.

Suppose (Ci, NJj) means that the number of
control variables is i and the number of noise

variable is J, respectively. In <Table 3> and

<Table 4>, the cases where the run-size is the
same are (C2, N1), (C3, N1), (C5, N1), (C6, N1),
(C4, N3). There exists one case where the
run-size of combined array is bigger than that
of product array : (C4, N1).

When we need to allocate more than two
2-level factors with some 3-level factors, there
are only two appropriate orthogonal arrays,

Ls(2"x3%) and L,(2'x3%). Because of such a
limit of form of orthogonal arrays, we used the
dummy-level technique or the combination de-
sign in some cases. In <Table 3>, we can see
what kind of technique is used in that cases.

3. Comparative Study : Example

In this section, we will compare the product
array approach with the combined array ap-—
proach through the example.

We want to show that for many situations, the
combined-array approaches is better than the
product array approach in the sense that the
former needs fewer experiments than the latter,
and the results are approximately the same.
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3.1 Product Array Approach and y, are the ‘larger—-the-better’ and the
‘smaller~the—better’ characteristics, respec-
Suppose that the objective is to find the si~  {yely. <Table 7> and <Table 8> give ANOVA

multaneous optimum conditions for increasing tables for SN ratio of ¥, 7, respectively
1> 2 .

We can find the simultaneous optimum con-
dition, A¢B1Co by summarizing the results of all
the data as shown in <Table 9>.

the strength of plastic product and reducing the
wear on the plastic product. Suppose there are
three control factors A, B and C which are as-

signed to the orthogonal array, Ls(2'x37). Also

suppose there is a noise factor N with three <Table 5> Factors and levels of plastic
levels. (Np : good condition, N : normal con- experiment
dition, Nz bad condition). The control factors Control factors -1 level O level 1 level
are listed in <Table 5>. <Table 6> gives a set
of strength data » and wear data »,. The A time (min) 120 125 130
run-size in Table 6 is 108. B : temperature () 60 70 80

. e C :sti d ) 700 800 900

Suppose that the quality characteristics for stir speed (rpm

<Table 6> Product array design and data in plastic experiment (See and Park, 1996)

Control factor assignment and

N Y
column number

®* U X T

No N Ng SN No N;i Ng SN

-1 -1 -1 -1 -1 -1 -1 -1 45 49 52 3370 30 25 18 -29.96

1

2 -1 -1 0 0 0 0 0 0 65 64 60 3597 15 11 10 -21.72
3 -1 -1 1 1 1 73 69 75 3717 29 31 22 -28.82
4 -1 o -1 -1 0 0 1 1 63 60 69 36.08 8 14 11 -23.69
5 -1 0 0 0 1 1 -1 -1 55 56 49 3449 9 7 15 -20.73
6 -1 0 1 -1 -1 0 0 68 72 72 3697 19 17 12 -25.77
7 -1 1 -1 0 -1 1 62 66 61 3597 9 12 5 -19.21
8 -1 1 0 1 0 -1 1 -1 55 49 56 3449 14 20 17 -24.70
g -1 1 1 -1 1 -1 0 74 80 74 3760 8 16 17 -22.85
10 1 -1 -1 1 1 0 0 -1 69 55 66 3591 25 29 29 -28.75
11 1 -1 o -1 -1 0 57 52 44 34.00 19 19 13 -23.09
12 1 -1 1 0 o0 -1 -1 1 78 76 68 3734 12 16 14 -22.75
13 1 0 -1 0 1 -1 1 0O 50 52 46  33.83 9 12 8 -22.62
14 1 0 0 1 -1 o -1 1 51 45 46 3347 16 22 23 -26.16
15 1 0 1 -1 0 1 0 -1 66 75 69 36.87 12 13 8 -20.99
16 1 1 -1 1 0 1 -1 0 5 51 59 34.81 18 26 23 -26.93
17 1 1 0 -1 1 -1 0 1 50 45 48 33.54 11 19 13 -25.28
18 1 1 1 0 -1 0 1 -1 73 67 55 3607 11 7 10 -19.54

Sum 638.89 -424.25
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<Table 7> ANOVA table (SN for strength)

Source of Sum of Degrees Mean Fy
variation squares freedom square
A 0.51 2 0.255 0.36
B 26.05 2 13.025  18.19"
C 1.07 2 0.535 0.75
e 7.88 11 0.716
T 35.51 17

<Table 8> ANOVA table (SN for wear)

Source of Sum of Degrees of Mean

variation squares freedom square Fo
A 45 2 22,50 15.85
B 1.67 2 0.84 0.59
C 106.79 2 53.40 37.63"
e 15.85 11 1.42
T 169.06 17

<Table 9> Summarized table for optimal
condition

Sum of SN Sum of SN

Factor Level for Strength for Wear Ov‘erall
B ATCH optimum
A -1 214.09 -154.67
(Time) 212.28 -132.99 0O
1 213.52 -136.59
B -1 210.87 -143.67
(Temper O 205.96 -141.40
ature) 1 223.06 -139.18 0]
C -1 211.79 -140.87
(Stir 0 215.28 -123.79 0]
speed) 1 212.82 -159.59

3.2 Combined Array Approach

In the product array design in <Table 6>, if
we allocate the noise variable z into column 5
in the inner array, this is a typical combined ar-
ray for this experiment. The model fitted in the
combined array can be the quadratic full model
in the equation (1), but we used a reduced model
using comparatively significant factor to give
more correct results. We want to show that the
combined array approach using P, and B meas-

ures gives similar results compared with the
product array approach in spite of fewer run-size.

We are assuming that y, and y, are modeled
by functions of the same form. <Table 10> gives
the data we used in combined array approach.
The run-size in <Table 10> is 36. The run-size
is one third of the run-size of product array
approach.

<Table 10> Combined array design and data

Control factor assignment and
column number
EXP

X1 Xz X3 Z (S (S e
el (A B © NV »w o

2 3 4 5 6 7 8
1 -1 -1 -1 -1 -1 -1 ~1 -1 45 30
2 -1 -1 0 0 O O O 0 64 11
3 -1t -1 1 1 1 1 1 1 75 22
4 -1 0 -1 -1 0 0 1 1 60 14
5 -1 0 0 O 1 1 -1 -1 49 15
6 -1 0 1 1 -1 -1 0O 0 68 19
7 -1 1 -1 0-1 1 0O 1 62 9
8 -1 1 0 1 0 -1 1 -1 45 20
9 -1 1 1 -1 1 O0O-1 O 74 17
o 1 -1 -1 1 1 0 0 -1 66 29
1 1 -1 0 -1 -1 1 1 0 57 19
2 1 -1 1 0 0-1-1 1 76 15
3 1 0-1 0 1 -1 1 0 46 8
4 1 0 0 1 -1 0 -1 1 51 15
5 1 0 1 -1 0 1 0 -1 75 13
% 1 1 -1 1 0 1 -1 0 51 25
7 1 1 0 -1 1 -1 0 1 48 13
8 1.1 1 0-1 0 1 -1 71 11

The optimal condition can be obtained by min-
imizing P,, and Py, respectively. To implement
computations, we used the IML procedure in
SAS.

We obtained the optimal conditions when the
values of z,’s are assumed to be an integer, and
when the value of z,’s are assumed to be the
first place of decimal as follows. Here we as-—
sume that the variance constraints as ‘< 2.1, <
5.5" and the mean response constraints as ‘=
78.5, < 9.0’ for two responses respectively by
the experimenter’s requirements.
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P (0,(z) 22.1,0,(z) < 55)

P(my(z) > 745, my(z) < 10.2)

x' my(z) | my(z) | v,(z) | v,(2) | Py x" m, () | my(x) | o) | 0,(@) | Py
[010] [79.13| 7.89 | 1.75 | 5.06 |0.596 [0 1 0] |79.13| 7.89 | 1.76 | 5.06 | 0.300
x' T?Aﬂ,l (z) T;L2 (z) {)1 (z) {/2 (z) Py, x 'nAzl (x) 7;L2 () 1;1 (z) {12 (z) P,
((21-2]]79.10| 7.64 | 1.61 | 5.06 |0.511 [-.7 .9 -.2] |74.63|10.15| 0.81 | 0.69 |0.105
P (m, (z) > 78.5,m, () < 9.0) P, (m,(z) > 80.1,my(x) < 7.9)
x" ’I;Ll (z) 7;L2 (z) ’ZJI (x) 132 (x) Py, x 'nA”Ll (x) nAmz (z) IA/l (z) 132 (x) Py
[0 1 0] {79.13| 7.89 | 1.75 | 5.06 | 0.300 [1T 1 0] {80.13| 5.14 | 2.561 | 12.81|0.545
x m (@) | mye) | v, () | 0,(z) | Py x" my (@) | my(x) | v (z) | v(z) | Py
[-.1 1-.3]}78.52| 884 | 1.29 | 2.95 | 0.205 [1.0 1.0 0] | 80.13| 5.14 | 2.51 |12.81 | 0.545

Note that we can get the similar results as the
results of the product array approach in Table
9, even though using the only one third of all
data. The optimal condition x* is approximately
[0 1 Ol If we let the value of z,’s to be the
first place of decimal, we can get more detailed
optimum condition. So we can say the combined
array approach using P, and P, gives similar
results compared with the product array ap-
proach in spite of fewer run-size and give more
information about optimality than the product
array approach.

However, according to the constraints on var—
iance and mean, the optimal condition using 7,
and P, varies to some extend. The following ta-
bles show the results.

P (0,(2) = 11, 5,(e) < 3.3)

x my(x) | my(e) | v,(&) | 0,(z) | Py
[1 O 0] |57.17| 6.63 | 0.07 | 1.76 | 7.462
x m (@) | my(@) | 0, | o,@) | Py
[-.2 19 -2]175.13| 878 | 1.06 | 2.23 | 1.491
PM(v:(a:) > 4.5,172(95) < 7.8)

x T;Ll (z) 732 (z) {21 (z) 132 (z) P,
[0 1 0] |79.13]| 7.89 | 1.75 | 5.06 |0.596
x my(z) | my@@) | o(x) | 0,(z) | Py,
[61-2] | 795 | 654 | 1.89 | 7.73 | 0.147

It will be of interest to decide a good con-
straint so that we get a good optimal condition
if we have no prior knowledge about mean re-
sponse and variance response.

4. Concluding Remarks

The combined array approach allows one to
provide separate estimates for the mean re-
sponse and for the variance response. Accord-
ingly, we can apply the primary goal of the
Taguchi methodology which is to obtain a target
condition on the mean while constraining the
variance, or to minimize the variance while con-
straining the mean.

We compared the simultaneous optimi— zation
using the Taguchi's product array with using the
combined array. We used simultaneous opti—
mization measures, P, and B in this paper.

In this article, we investigated designs possi—
ble to use in the combined array, and compared
with the cases of the product array. When some
control and noise variables exist, we can get
similar result through combined array approach
though the fewer run-size.

References

[1] Box, G. E. P. and Jones, S.(1990), “Design-




ERF Y stalx

H34AHHM45/101

ing Products That Are Robust to the
Environment”, Total Quality Management,
Vol. 3, pp. 265-282.

[2] Kwon, Y. M.(1994), Simultaneous Optim~-
ization of Multiple Responses for Robust
Design, Doctoral Thesis, Department of
Statistics, Seoul National University.

[3] Nair, V. N.(ed.)(1992), “Taguchi’s Para-
meter Design : A Panel Discussion”, Tech-
nometrics, Vol. 34, pp. 127-161.

(4] Park, S. H.(1996), Robust Design and
Analysis for Quality Engineering, Chapman
& Hall, London, England.

[5] Taguchi, G. (1986), Introduction to Quality
Engineering, White Plains, NY Quality
Resources.

[6]1 Taguchi, G. and Wu, Y.(1985), Introduction
to Off- Line Quality Control, Central Japan
Quality Association, Nagoya, Japan.

[7] Taguchi, G., Chowdhury, S., Wu, Y.(2001),
The Mahalanobis—Taguchi System, McGraw—
Hill Press, New York.

[8] Vining, G. G. and Myers, R. H.(1990),
“Combining Taguchi and Response Surface
Philosophies : A Dual Response Appro-
ach”, Journal of Quality Technology, Vol.
22, pp. 38-45.

[9] Welch, W. J., Yu, T. K, Kang, S. M., and
Sacks, J.(1990), “Computer Experiments
for Quality Control by Parameter Design”,
Journal of Quality Technology, Vol. 22, pp.
156-22.




