DOI QR코드

DOI QR Code

The Bonding of Interstitial Hydrogen in the NiTi Intermetallic Compound

  • Published : 2006.12.20

Abstract

The interstitial hydrogen bonding in NiTi solid and its effect on the metal-to-metal bond is investigated by means of the EH tight-binding method. Electronic structures of octahedral clusters $Ti_4Ni_2$ with and without hydrogen in their centers are also calculated using the cluster model. The metal d states that interact with H 1s are mainly metal-metal bonding. The metal-metal bond strength is diminished as the new metal-hydrogen bond is formed. The causes of this bond weakening are analyzed in detail.

Keywords

References

  1. Lee, R. N.; Withers, R. J. Appl. Phys. 1978, 49, 5488 https://doi.org/10.1063/1.324520
  2. Zhao, G. L.; Harmon, B. N. Phys. Rev. B 1993, 48, 2031 https://doi.org/10.1103/PhysRevB.48.2031
  3. Ye, Y. Y.; Chan, C. T.; Ho, K. M. Phys. Rev. B 1997, 56, 3678 https://doi.org/10.1103/PhysRevB.56.3678
  4. Rhee, J. Y.; Harmon, B. N.; Lynch, D. W. Phys. Rev. B 1999, 59, 1878 https://doi.org/10.1103/PhysRevB.59.1878
  5. Bihlmayer, G.; Eibler, R.; Neckel, A. Phys. Rev. B 1994, 50, 13113
  6. Pasturel, A.; Colinet, C.; Manh, D. N.; Paxton, A. T. Phys. Rev. B 1995, 52, 15176
  7. Wang, X.; Ye, Y. Y.; Chan, C. T.; Ho, K. M.; Harmon, B. N. Phys. Rev. B 1998, 58, 2964 https://doi.org/10.1103/PhysRevB.58.2964
  8. Wiswall, R. In Hydrogen in Metals II, Topics in Applied Physics; Alefeld, G., Volkl, J., Eds.; Springer: Berlin, 1978; Vol. 29, p 201
  9. Buchner, H.; Gutjahr, M. A.; Beccu, K. D.; Safferer, H. Z. Metallkd. 1972, 63, 497
  10. Wakao, S.; Yonemura, Y.; Nakano, H.; Schumada, H. J. Less-Common Met. 1984, 104, 365 https://doi.org/10.1016/0022-5088(84)90421-1
  11. Noreus, D.; Werner, P. E.; Alasafi, K.; Schmidt-Ihn, E. Int. J. Hydrogen Energy 1985, 10, 547 https://doi.org/10.1016/0360-3199(85)90086-2
  12. Soubeyroux, J. L.; Fruchart, D.; Lorthioir, G.; Ochin, P.; Colin, C. J. Alloys Comp. 1993, 196, 127 https://doi.org/10.1016/0925-8388(93)90582-8
  13. Eibler, R.; Redinger, J.; Neckel, A. J. Phys. F: Met. Phys. 1987, 17, 1533 https://doi.org/10.1088/0305-4608/17/7/011
  14. Sanati, M.; Albers, R. C.; Pinski, F. J. Phys. Rev. B 1998, 58, 13590 https://doi.org/10.1103/PhysRevB.58.13590
  15. Nambu, T.; Ezaki, H.; Yukawa, H.; Morinaga, M. J. Alloys Comp. 1999, 293-295, 213 https://doi.org/10.1016/S0925-8388(99)00421-1
  16. Kellou, A.; Nabi, Z.; Tadjer, A.; Amrane, N.; Fenineche, N.; Aourag, H. Phys. Stat. Sol. B 2003, 239, 389 https://doi.org/10.1002/pssb.200301848
  17. Gupta, M.; Rodriguez, E. J. Alloys Comp. 1995, 219, 6 https://doi.org/10.1016/0925-8388(94)05061-9
  18. Hoffmann, R. J. Chem. Phys. 1963, 39, 1397 https://doi.org/10.1063/1.1734456
  19. Whangbo, M.-H.; Hoffmann, R. J. Am. Chem. Soc. 1978, 100, 6093 https://doi.org/10.1021/ja00487a020
  20. Whangbo, M.-H.; Hoffmann, R.; Woodward, R. B. Proc. R. Soc. London 1979, A366, 23
  21. Hoffmann, R. Solids and Surfaces: A Chemist's View of Bonding in Extended Structures; VCH Publishers: New York, 1988
  22. Alvarez, S. Tables of Parameters for Extended Hückel Calculations; Barcelona, Spain, 1995

Cited by

  1. Tensile behaviour of superelastic NiTi alloys charged with hydrogen under applied strain vol.33, pp.13, 2017, https://doi.org/10.1080/02670836.2017.1320084
  2. The Bonding of Interstitial Hydrogen in the NiTi Intermetallic Compound vol.38, pp.11, 2007, https://doi.org/10.1002/chin.200711002
  3. Theoretical Study of the Interaction of N2O with Pd(110) vol.28, pp.12, 2006, https://doi.org/10.5012/bkcs.2007.28.12.2369
  4. The location of atomic hydrogen in NiTi alloy: A first principles study vol.50, pp.3, 2006, https://doi.org/10.1016/j.commatsci.2010.10.013
  5. Ab initiostudy of point defects in NiTi-based alloys vol.89, pp.1, 2014, https://doi.org/10.1103/physrevb.89.014110
  6. A Practitioner’s Perspective of Hydrogen in Ni-Ti Alloys vol.5, pp.3, 2006, https://doi.org/10.1007/s40830-019-00225-6