Molecular Engineering. Part 13. Formation of Hemicarcerand Dimer by Metal Coordination

Yun-Soo Yoon, Hee Soo Park, and Kyungsoo Paek*
Department of Chemistry and C.LMDRC. Soongsil Unversity, Seoul 156-7+3, Korea. ${ }^{-}$E-mall: kpaek@ssu.ac.kr Recenved July 26, 2006

Key Words: Hemicarcerand. Metal coordination. Self-assembly. Dimer

Container molecules such as carcerand. ${ }^{1}$ hemicarcerand, ${ }^{\text {T}}$ and self-assembled molecular capsule ${ }^{3}$ have been characterized as molecular scavengers. molecular storages, molecular reactors and controlled-releasing systems. Various heterobridged hemicarceplexes in which the fourth bridging unit differs from the other three bridging units were reported by Cram et al. ${ }^{4}$ and the fourth bridging unit has been used to adopt an additional binding site ${ }^{\text {4did }}$ or to comect with another hemicarcerand to obtain covalently linked dimeric hemicarceplexes. ${ }^{\text { }}$

The characteristics of container molecules can be accumulated when they are assembled to highly ordered supramolecular systems. Dimeric container system could duplex the functions of monomeric container molecule and a wellordered multiple container system would result in a new high density information storage system. ${ }^{\text {. }}$
Metal coordination has become an important synthetic strategy for the self-assembly of high-ordered and welldefined supramolecular architectures because it allows well defined geometry, coordination number, and a range of binding strengths. ${ }^{7}$ Recently the interesting guest's size and shape selectivities of cyanohemicarcerand 1 was reported. ${ }^{8}$ But the stability of $\mathrm{Pd}(\mathrm{II})$ or $\mathrm{Pt}(\mathrm{II})$-coordinated dimeric assembly $1-\mathrm{ML}_{2}-1$ was too weak to be observed by ${ }^{1} \mathrm{H}$ NMR spectrometry. ${ }^{3}$ Here we report on the synthesis of hemicarcerand + which has a metal coordinating p-pyridylphenyl unit on a pillar and its formation of dimeric self-assemblies $\mathbf{5} \mathbf{a}$ and $\mathbf{5} \mathbf{b}$ by $\mathrm{Pd}(\mathrm{II})$ and $\mathrm{Pt}(\mathrm{II})$-coordination. respectively.

As shown in Scheme 1 . diol 2^{8} was reacted under the dilution condition with $\alpha \alpha$-dibromo- 5 -bromo- m-xylene in

Scheme 1. Synthesis of $\mathrm{Pd}(\mathrm{II})$ or $\mathrm{Pt}(\mathrm{II})$-coordmated dumenc hemicarcerands $5 \mathbf{a}$ and $\mathbf{5 b}$ ($\mathrm{R}=$ hepty l).
a mixture of $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ and DMF at $60^{\circ} \mathrm{C}$ to afford bromohemicarcerand 3 in 70% yield after cluromatographic purification (hexane : $\mathrm{CHCl}_{3}=2: 1$) and recrystallization $\left(\mathrm{CH}_{3} \mathrm{OH}\right)$. The Suzuki coupling reaction between bromohemicarcerand 3 and 4-pyridineboronic acid pinacol cyclic ester gave pyridinohemicarcerand 4 in 20% yield. Hemicarcerands $\mathbf{3}$ and 4 were characterized by ${ }^{1} \mathrm{H}$ NMR. FAB+ Mass spectra, and elementary analy ses.

Metal-coordinated dimeric container molecular systems 5a and 5b were formed using $\mathrm{Pd}(\mathrm{DMSO})_{2} \mathrm{Cl}_{2}$ or cis-

Figure 1. 'H NMR spectral variation of Hemicarcerand 4 in CDCl_{3} at $25{ }^{\circ} \mathrm{C}$ by Metal Complex addition; (a) free 4, (b) 0.25 eq $\mathrm{Pd}\left[(\mathrm{DMSO})_{2} \mathrm{Cl}_{2}\right]$, (c) 0.50 eq $\mathrm{Pd}\left[(\mathrm{DMSO})_{2} \mathrm{Cl}_{2}\right]$, (d) 0.25 eq cis$\mathrm{Pt}\left[\left(\mathrm{CH}_{3} \mathrm{CN}_{2}\right)_{2} \mathrm{Cl}_{2}\right]$, and (e) 0.50 eq cis- $-\mathrm{Pt}\left[\left(\mathrm{CH}_{3} \mathrm{CN}_{2}\right)_{2} \mathrm{Cl}_{2}\right]$.

Table 1. Summary of the chemical shift changes upon addition of metal complexes, $\mathrm{Pd}\left[(\mathrm{DMSO})_{2} \mathrm{Cl}_{2}\right]$ tor dimer 5 a and cis$\mathrm{Pt}\left[\left(\mathrm{CH}_{3} \mathrm{CN}_{2} \mathrm{Cl}_{2}\right]\right.$ for dimer $\mathbf{5 b}$

Eq of Complex	Chemical shift (ppm)							
	H_{4}		H_{5}		H_{5}		$\mathrm{H}_{山}$	
	5a	5b	53	5b	5a	5b	5 a	5b
None	8.65		7.48		724		782	
0.25 eq	8.83	8.75	7.55	7.63	7.28	7.26	7.87	7.90
	8.59	8.65		7.50	7.26		7.83	7.82
0.5 eq	8.83	8.75	7.58	7.68	7.28	7.31	7.88	790
$\begin{gathered} \Delta \delta \\ \left(\delta_{5}-\delta_{4}\right) \end{gathered}$	+0.18	+0.10	+0.10	+0. 20	+0.04	+0.07	+0.06	+0.08

$\left.\mathrm{Pt}\left[\mathrm{CH}_{3} \mathrm{CN}_{3}\right]_{3} \mathrm{Cl}_{2}\right]$. Figure I and Table I show the chemical shifts changes of hemicarcerand 4 in CDCl_{3} at $25^{\circ} \mathrm{C}$ upon addition of $\mathrm{Pd}(\mathrm{DMSO})_{2} \mathrm{Cl}_{2}$ or cis $-\mathrm{Pt}\left[\left(\mathrm{CH}_{3} \mathrm{CN}_{2}\right)_{2} \mathrm{Cl}_{2}\right]$. respectively. The peaks for $\mathrm{H}_{\mathrm{a}}(8.65 \mathrm{ppm}), \mathrm{H}_{\mathrm{b}}(7.48 \mathrm{ppm}) . \mathrm{H}_{\mathrm{c}}(7.24$ $\mathrm{ppm})$, and $\mathrm{H}_{\mathrm{il}}(7.82 \mathrm{ppm})$ of free hemicarcerand 4 tend to split into two sets of peaks by 0.25 eq. metal complex which correspond to those of hemicarcernd 4 and dimer 5 (Fig. 1. (b) and (d)). Those two peaks for each $\mathrm{H}_{\mathrm{a}} . \mathrm{H}_{\mathrm{b}}, \mathrm{H}_{\mathrm{c}}$. and H_{i} then became one peaks by 0.50 eq. metal complex (Fig. l. (c) and (e)). which confirms that hemicarcerand 4 and metal complex bind in 2:1 ratio to form a stable dimeric assembly 5. No further split or shift was observed by more than 0.50 eq. of metal complex.
Table 1 summarizes the chemical shift changes upon addition of metal complexes. The change of chemical shifts upon complexation decrease in order of those of $\mathrm{H}_{\mathrm{a}}>\mathrm{H}_{\mathrm{b}}>$ $H_{\text {il }}$ and $>H_{c}$ for dimer 5 a and those of $H_{b}>H_{\mathrm{a}}>\mathrm{H}_{\mathrm{c}}$, and $>$ H_{c} for dimer $\mathbf{5} \mathbf{b}$ due to the strong metal coordination of pyridyl ligand to metal.

The formation of dimeric hemicarcerand 5 suggests that a
hemicarcerand with four metal-ligands on each four pillars. which is being developed. would form 2-D net-work of container molecules by metal coordination.

Experimental Section

Bromohemicarcerand 3. A mixture of diol 2 (450 mg . 0.21 mmol) and $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ ($409 \mathrm{mg}, 1.25 \mathrm{mmol}$) in degassed DMF was stirred at $60^{\circ} \mathrm{C}$ for 20 min under Ar gas and added 1-bromo-3.5-bis(bromomethyl)benzene (93 mg .0 .27 mmol). then stirred at $60^{\circ} \mathrm{C}$ fot 2 days. The mixture was cooled to room temperature and filtered through celite. The residue was partitioned in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and 3 N HCl . The organic layer was washed with 3 N HCl twice. water. brine, and then dried over MgSO_{4}. The solvent was evaporated under vacumm. The residue was purified by silica gel column chromatography with a mixture of $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ Hexane $(1 ; 1)$ as a mobile phase and the product was recrystallized in $\mathrm{MeOH}(343 \mathrm{mg}$. 70%): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz} . \mathrm{CDCl}_{3}$) $\delta 0.90\left(\mathrm{t}, 24 \mathrm{H}, \mathrm{CH}_{3}\right)$. 1.26-1.43 (m. $\left.80 \mathrm{H} .\left(\mathrm{CH}_{2}\right)_{5}\right), 1.90-1.94\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{CH} 2\left(\mathrm{CH}_{2}\right)_{2}-\right.$ $\mathrm{CH} 2) .2 .18\left(\mathrm{~m} .16 \mathrm{H} . \mathrm{ArHCH}\right.$) .3 .81 (t. 4 H. unsym. $\mathrm{OCH} \mathrm{CH}_{2}$). 3.91-3.96 (m. 8H. sym. OCH_{2}). 4.15-4.18 (d. $J=8.0 .8 \mathrm{H}$. inner. $\mathrm{OCH}_{2} \mathrm{O}$) , $4.70(\mathrm{t}, J=4.0,8 \mathrm{H} . \mathrm{CH}$ methine). 4.93 (s , $4 \mathrm{H} . \mathrm{ArCHO}$). $5.64-5.83$ (d. $J=8.0 .8 \mathrm{H}$. outer $\mathrm{OCH} \mathrm{H}_{2} \mathrm{O}$). 6.76-6.86 (m. 8H. ArH). 7.13 (s. 2H. ArH). 7.66 (s. 1H. $\mathrm{ArH})$: Anal. Calcd for $\mathrm{C}_{149} \mathrm{H}_{183} \mathrm{BrO}_{24} \cdot 5 \mathrm{MeOH} \cdot 3 \mathrm{Hexane}$: C , 71.23: H. 8.98. Found: C. 71.15: H. 9.00.

Pyridinohemicarcerand 4. Under Ar atmosphere. hemicarcerand 3 (100 mg .0 .043 mmol). 4-pyridineboronic acid pinacol cyclic ester (22.0 mg .0 .11 mmol) and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ were added to a argon-saturated mixture of THF (55.0 mL), $2 \mathrm{M} \mathrm{KF}(55.0 \mathrm{~mL})$, and $\mathrm{EtOH}(30.0 \mathrm{~mL})$. The mixture was refluxed for 5 days. After cooling to room temperature and evaporation of solvent, the residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and water. The organic layer were washed with water and brine. and then dried over MgSO_{4}. After concentration, the residue was purified by silica gel column chromatography with a mixture of $\mathrm{EtOAc} / \mathrm{Hexane}(1: 7)$ as a mobile phase and recrystallized in $\mathrm{EtOH}(20.0 \mathrm{mg} .20 \%)$: $\mathrm{FAB}+\mathrm{MS} \mathrm{m} / \mathrm{z}$ $2326.1\left([\mathrm{M}+1]^{+}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 0.91(\mathrm{t}, 24 \mathrm{H}$. CH_{3}). 1.26-1.44 (m. $\left.80 \mathrm{H},\left(\mathrm{CH}_{2}\right)_{j}\right), 1.91\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{CH}_{2}-\right.$ $\left.\left(\mathrm{CH}_{2}\right) \mathrm{CH}_{2}\right), 2.19(\mathrm{~m}, 16 \mathrm{H}, \mathrm{ArHCH})$) $3.91(\mathrm{t}, 4 \mathrm{H}$. unsym. $\left.\mathrm{OCH}_{2}\right) .3 .97\left(\mathrm{~m}, 8 \mathrm{H}\right.$, sym. OCH_{2}). $4.19(\mathrm{~d} . J=4.0,8 \mathrm{H}$. inner $\mathrm{OCH}_{2} \mathrm{O}$). 4.71 (t. $J=8.0,8 \mathrm{H}, \mathrm{CH}$ methine). $5.06(\mathrm{~s}, 4 \mathrm{H}$, $\mathrm{ArCHO}), 5.68-5.85$ (d. $J=8.0,8 \mathrm{H}$, outer $\mathrm{O}\left(\mathrm{H}_{2} \mathrm{O}\right), 6.78-$ $6.83(\mathrm{~m}, 8 \mathrm{H} . \mathrm{ArH}) .7 .50(\mathrm{~d}, J=4.0,2 \mathrm{H} . \mathrm{NCHCH}), 7.83(\mathrm{~s}$. 1H. $\mathrm{Ar} H$). 8.68 (d. $J=8.0,2 \mathrm{H} . \mathrm{NCH}$): Anal. Calcd for $\mathrm{C}_{145} \mathrm{H}_{187} \mathrm{NO}_{34} \cdot \mathrm{EtOAc} \cdot 3 \mathrm{Hexane} \cdot 4 \mathrm{EtOH} ; \mathrm{C}, 73.52 ; \mathrm{H}, 9.20$; N, 0.49. Found: C, 73.38: H. 9.02: N, 0.18.

Acknowledgments. This work was supported by Soongsil University (2005). H. S. Park thanks to the Seoul R\&BD Program.

References

1. (a) Cram. D. T.: Cram. T. M. Contaner Molecntes and Their

Guests. Monographs in Supranolectlar Chenistry: Stoddart. J. F.. Ed.: The Roval Society of Chemistry: Cambridge. UK. 1994: vol. 4. Chap. 7. (b) Jasat. A.: Sherman. J. C. Chem. Rev. 1999. 99. 931.
2. (a) Wanmuth. R.; Yoon, J. Acc. Chem. Res. 2001.34. 95. (b) Cram. D. I.; Tanner M. E.; Thomas. R. Angew Chem. Iht Ed Engl. 1991. 30 , 1024. (c) Cram. D. T.: Tanner. M. E.: Knobler, C. B. J. Am. Chen. Soc. 1991. M3, 7717. (d) Cram. D. J.: Blanda. M. T.: Pake. K.: Knobler. C. B. J. Am. Chem. Soc. 1992. IIf. 7765. (e) Helgeson. R. C.: Paek. K.: Knobler. C. B.: Maverick. E. F.: Cram. D. I. J.Am. (Them. Soc. 1996. 11S, 5590 .
3. (a) Heinz, T;: Rudkevich, D. M.; Rebek; J. Nature 1998. 394. 764. (b) Chapman. R. G: Olovsson. G.: Trotter. J: Sherman. J. C. J. Am. Chem. Soc. 1998. I20. 6252 (c) Choi. H.-I. Park. Y. S.: Cho C. S.: Koh. K.: Kim. S.-H.: Paek. K. Org. Lett 2004. 6. 4431 . (d) Rebek. J. Angew Chem. Int. Ed. 2005. H. 2068. (e) Palmer. L. C.:

Rebek. J. Org. Lett. 2005. 7, 787.
4. (a) Yoon. T.: Knobler. C. B.: Maverick. E. F.: Cram. D. J. Chen. Commu. 1997. 1303. (b) Yoon. J.: Cram. D. T. Chem. Conmum. 1997. 1505. (c) Yoon. J.: Sheu. C.: Houk. K. N.: Knobler. C. B.: Cram. D. J. J. Org. Chem. 1996, 61, 9323. (d) Kurdistani. S. K.: Helgeson, R. C.; Cram, D. J. J. Am. Chem. Soc. 1995, 117. 1659.
5. Yoon. J.: Cram. D. J. Chem. Commm. 1997. 2065.
6. Ihm. C.: Jo. E.: Kim. J.: Paek. K. Angew Chem. Im. Ed. $2006 .+5$. 2056.
7. (a) Holliday. B. J.; Mirkin. C. A. Angew Chem. Int Ed. 2001. 40. 2022. (b) Leinnger, S.: Olenyuk. B.; Stang, P. J. Chem. Rev. 2000. 100. 853. (c) Yoshizawa. M:- Ono, K.: Kumazawa, K.; Kato. T.; Fujita. M J.An. Chem. Scc. 2005. 127. 10800 . (d) Ihm. C.: Kim. J.: Paek. K. Bull. Korean Chem Soc. 2005. 26.805.
8. Ye. B.: Paek. K. Bull. Korean Chem. Soc. 2006. 27. 305

