Synthesis of 2-Benzylidene-7a-alkyltetrahydropyrrolizine-3,5-diones Starting from Baylis-Hillman Adducts

Hyun Seung Lee, Seong Jin Kim, and Jae Nyoung Kim*
Departnent of Chemistry and Institute of Basic Science, Chonnam National University, Gwangiu 500-757, Korea
*E-mail: kimjn@chonnamac.kr Received May 13, 2006

Key Words : Pyrrolizine-3,5-dione, Baylis-IIilman adducts, Lactamization

Recently, 3-alkylidenedihydropyrrol-2-ones ${ }^{1 a}$ and 3-alkylidenedihydropyrrole derivatives ${ }^{\text {1/ }}$ were synthesized starting from the Baylis-Hillman adducts of methyl acrylate and methyl vinyl ketone, respectively. These compounds were prepared by the reductive cyclization of nitroalkane derivatives, which were synthesized from the Baylis-Hillman acetate by the $\mathrm{S}_{N} 2^{1}$ reaction with primary nitroalkane, ${ }^{12}$ as shown in Scheme 1.
We reasoned that we could prepare tetrahydropyrrolizine-3,5-dione skeleton by using the same nitroalkane derivative $\mathbf{1}$ as the starting material as shown in Scheme 2. A variety of compounds with tetrahydropyrrolizine-3,5-dione backbone were known and have been synthesized. ${ }^{3+4}$ The overall reaction pathway for the target compound involved sequential introduction of primary nitroalkane at the primary position of Baylis-Hillman adduct to make the starting material $\mathbf{1},{ }^{1,2}$ Michael addition of $\mathbf{1}$ to appropriate Michael
acceptor 2 to form 3, reduction of the nitro group of $\mathbf{3}$ and concomitant cyclization to lactam compound 4. From this lactam derivative 4 the desired tetrahydropyrrolizine-3,5dione skeleton 5 could be synthesized.

Thus, we prepared 1a from the reaction of the corresponding Baylis-Hillman acetate and nitroethane as reported. ${ }^{1,2}$ The next Michael addition reaction was carried out with methyl acrylate (2a) in the presence of DBU in $\mathrm{CH}_{3} \mathrm{CN}$ to produce 3a. ${ }^{2}$ With this compound $\mathbf{3 a}$ in our hands, we examined the reduction of nitro group under $\mathrm{Fe} / \mathrm{AcOH}$ conditions and obtained 4a (54\%). We could not find the other possible lactam compound $\mathbf{4}^{\prime}$ (Scheme 2). The next cyclization reaction of $\mathbf{4 a}$ to the final compound $\mathbf{5 a}$ was perfomed according to method already reported in a similar system, ${ }^{3 c}$ hydrolysis of the ester group and the following lactamization under the influence of acetic anhydride at refluxing temperature.

Encouraged by the successful results, we examined the

Scheme 1

Scheme 2

Table 1. Synthesis of 2-benzylidene-7a-alkyltetrahydropyrrolozine-3,5-diones
Entry
${ }^{4}$ The starting materials 1a-d were prepared according to ref. 1 and 2 . ${ }^{5}$ Conditions: 1 (1.0 equiv, 2 (1.5 equiv), DBU (1.0 equiv), $\mathrm{CII}_{3} \mathrm{CN}, \mathrm{rt}, 30-60 \mathrm{~min}$. ${ }^{c}$ Conditions: 3 (1.0 equiv), Fe (10 equiv), AcOH , reflux, $2-9 \mathrm{~h}$. ${ }^{d}$ Conditions: (i) 4 (1.0 equiv), NaOH (3.0 equiv), aq EtOH, (ii) $\mathrm{H}_{3} \mathrm{O}^{+}$, (iii) $\mathrm{Ac}_{2} \mathrm{O}, 110{ }^{\circ} \mathrm{C}$, 2 h.
reactions with nitroalkane derivatives $\mathbf{1 b - d}$ and Michael acceptors 2 including ethyl acrylate (2b) and methyl vinyl ketone (2 c). The results are summarized in Table 1. The starting materials 1 a -d were prepared in $63-71 \%$ yields from the reaction of the corresponding Baylis-Hillman acetate and appropriate nitroalkanes under the influence of $\mathrm{K}_{2} \mathrm{CO}_{3}$ in DMF at room temperature. ${ }^{12}$ The next Michael reaction was carried out with the aid of DBU in $\mathrm{CH}_{3} \mathrm{CN}$ at room temperature in short time to produce 3a-e in high yields (73$87 \%$). The reductive cyclization of $\mathbf{3 a}$-d was carried out with $\mathrm{Fe} / \mathrm{AcOH}$ under refluxing conditions and we obtained the desired compounds 4a-d in $54-78 \%$ isolated yields. These compounds were transfomned to $5 \mathrm{a}-\mathrm{c}$ in $63-75 \%$ yields (entries I-4). As expected from the results of our previous paper, ${ }^{17}$ we obtained $6(45 \%)$ and $7(18 \%)$ from the reaction
of 3 e under the same reductive cyclization conditions (entry 5 in Table I and Scheme 2).

As shown in Scheme 3, we could also prepare symmetric bis-benzylidene compound $\mathbf{5 d}$. The required starting material 1e was synthesized directly in 85% yield from the reaction Baylis-Hillman acetate and nitroethane in a $2: 1$ ratio. From the reaction of 1 e we isolated $\mathbf{4 e}(33 \%)$ together with the final bis-benzylidene derivative 5d (27\%). The lactam 4 e could be converted into $\mathbf{5 d}$ by following the same reaction conditions in 58% yield.

In summary, we disclosed the synthesis of 2-benzylidene-7a-alkyl-tetrahydropyrrolizine-3,5-dione derivatives starting from the Baylis-Hillman adducts. The synthetic method was straightforward and the synthetic applications toward some important alkaloid backbone are actively underway.

Scheme 3

Experimental Section

Synthesis of 3a (Typical procedure): To a stirred solution of 1a ($498 \mathrm{mg}, 2.0 \mathrm{mmol}$) and methyl acrylate (2 a , $258 \mathrm{mg}, 3.0 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{CN}(5 \mathrm{~mL})$ was added DBU (304 $\mathrm{mg}, 2.0 \mathrm{mmol}$) and stirred at room temperature for 30 min . After the usual aqueous extractive workup with ether and column chromatographic purification process (hexanes/ ether, $5: 1$) we obtained $\mathbf{3 a}$ as a colorless oil, 570 mg (85%). The other compounds $\mathbf{3 b - e}$ were synthesized analogously and the spectroscopic data are as follows.
Compound 3a: colorless oil; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 1739,1543$, $1439 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 1.35(\mathrm{~s}, 3 \mathrm{H})$, 1.84-1.94 (m, 1H), 2.03-2.22 (m, 2H), 2.27-2.37 (m, 1H), $3.25(\mathrm{~d}, J=14.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.38(\mathrm{~d}, J=14.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.63$ (s, $3 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 7.26-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.31-7.44(\mathrm{~m}, 3 \mathrm{H})$, $7.92(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 21.43,28.63$, $33.95,35.47,51.78,52.19,89.96,127.60,128.41,128.67$, $128.77,134.98,143.92,168.04,172.41$.
Compound 3b: colorless oil; $\mathbb{R}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 1732,1543$, $1442 \mathrm{~cm}^{-1}$; 'H NMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 1.22(\mathrm{t}, J=7.2$ $\mathrm{Hz}, 3 \mathrm{H}), 1.35(\mathrm{~s}, 3 \mathrm{H}), 1.84-1.94(\mathrm{~m}, 1 \mathrm{H}), 2.02-2.21(\mathrm{~m}, 2 \mathrm{H})$, $2.27-2.37(\mathrm{~m}, 1 \mathrm{H}), 3.25(\mathrm{~d}, J=14.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.38(\mathrm{~d}, J=$ $14.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 4.08(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.27-$ $7.30(\mathrm{~m}, 2 \mathrm{H}), 7.31-7.43(\mathrm{~m}, 3 \mathrm{H}), 7.92(\mathrm{~s}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 14.08,21.39,28.88,33.96,35.52,52.17$, $60.66,89.99,127.61,128.41,128.65,128.76,134.97$, $143.87,168.03,171.95$.
Compound 3c: colorless oil; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 1736,1711$, $1541,1446 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 0.62(\mathrm{t}, J=$ $7.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.23(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.34(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$, $1.68-1.77(\mathrm{~m}, 1 \mathrm{H}), 1.82-1.92(\mathrm{~m}, \mathrm{H}), 1.96-2.23(\mathrm{~m}, 4 \mathrm{H})$, $3.26(\mathrm{~s}, 2 \mathrm{H}), 4.09(\mathfrak{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.23(\mathfrak{q}, J=7.2 \mathrm{~Hz}$, $2 \mathrm{H}), 7.26-7.43(\mathrm{~m}, 5 \mathrm{H}), 7.87(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75\right.$ $\mathrm{MHz}) \delta 7.91,13.98,14.09,28.15,28.67,29.19,32.19$, $60.57,61.36,93.24,128.23,128.38,128.45,128.70,135.13$, $143.13,167.63,171.99$.
Compound 3d: colorless oil; $\mathrm{R}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 1739,1720$, $1541,1437 \mathrm{~cm}^{-1}$; 'H NMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 0.75(\mathrm{t}, J=$ $7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.81-0.94(\mathrm{~m}, 2 \mathrm{H}), 1.12$ (quintet, $J=7.2 \mathrm{~Hz}$, $2 \mathrm{H}), 1.57-1.67(\mathrm{~m}, 1 \mathrm{H}), 1.73-1.84(\mathrm{~m}, 1 \mathrm{H}), 1.96-2.11(\mathrm{~m}$, $3 \mathrm{H}), 2.16-2.25(\mathrm{~m}, 1 \mathrm{H}), 3.27(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.64(\mathrm{~s}$, $3 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 7.27-7.43(\mathrm{~m}, 5 \mathrm{H}), 7.87(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 13.60,22.64,25.60,28.50,29.84,32.59$, $34.92,51.75,52.16,92.85,127.92,128.39,128.58,128.75$, $135.05,143.38,168.11,172.45$.
Compound 3e: colorless oil; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 1716,1541$, $1446 \mathrm{~cm}^{-1} ;{ }^{\mathrm{I}} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 1.33(\mathrm{~s}, 3 \mathrm{H}), 1.34$ (t, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.79-1.97(\mathrm{~m}, 1 \mathrm{H}), 2.04(\mathrm{~s}, 3 \mathrm{H}), 2.10-$ $2.27(\mathrm{~m}, 3 \mathrm{H}), 3.26(\mathrm{~d}, J=14.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.38(\mathrm{~d}, J=14.7 \mathrm{~Hz}$, $1 \mathrm{H}), 4.24(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.27-7.43(\mathrm{~m}, 5 \mathrm{H}), 7.90(\mathrm{~s}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 13.99,21.79,29.79$, $32.65,35.05,37.83,61.37,90.12,128.07,128.41,128.53$, $128.75,135.13,143.45,167.58,206.15$.
Synthesis of 4a (Typical procedure): A mixture of 3a ($503 \mathrm{mg}, 1.5 \mathrm{mmol}$) and $\mathrm{Fe}(840 \mathrm{mg}, 15 \mathrm{mmol})$ in AcOH (4 mL) was heated to reflux for 2 h . After the usual aqueous
extractive workup with EtOAc and column chromatographic purification process (hexanes/EtOAc, 1:1) we obtained $\mathbf{4 a}$ as a white solid, $222 \mathrm{mg}(54 \%)$. The other compounds $\mathbf{4 b - d}$ were synthesized analogously and the spectroscopic data are as follows.

Compound 4a: white solid, $\mathrm{mp} 118-119{ }^{\circ} \mathrm{C} ; \mathrm{R}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ $3213,1736,1693,1651 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{HNMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta$ $1.38(\mathrm{~s}, 3 \mathrm{H}), 1.88-2.08(\mathrm{~m}, 2 \mathrm{H}), 2.29-2.44(\mathrm{~m}, 2 \mathrm{H}), 2.87(\mathrm{dd}$, $J=17.4$ and $2.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.98(\mathrm{dd}, J=17.4$ and $2.7 \mathrm{~Hz}, 1 \mathrm{H}$), $\left.3.64(\mathrm{~s}, 3 \mathrm{H}), 7.27-7.51(\mathrm{~m} \mathrm{7H}) ;{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(CDCl}_{3}, 75 \mathrm{MHz}\right)$ $\delta 28.75,29.01,37.05,39.70,51.81,56.19,128.69(2 \mathrm{C})$, $129.60,130.57,131.16,135.50,170.87,173.59$; LCMS m / z $273\left(\mathrm{M}^{+}\right)$.

Compound 4b: white solid, mp $116-118^{\circ} \mathrm{C}$; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ $3209,1732,1693,1651 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{HNMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta$ $1.22(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.38(\mathrm{~s}, 3 \mathrm{H}), 1.90-2.00(\mathrm{~m}, 2 \mathrm{H})$, 2.32-2.40 (m, 2H), 2.87 (dd, $J=17.7$ and $2.7 \mathrm{~Hz}, 1 \mathrm{H}$), 2.99 (dd, $J=17.7$ and $2.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{q}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.11$ (br s, 1H), 7.27-7.48 (m, 6 H); ${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta$ $14.10,28.70,29.28,37.05,39.69,56.24,60.66,128.66$ (2C), $129.58,130.72,131.04,135.52,170.94,173.15$.

Compound 4c: colorless oil; $\mathrm{IR}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 3197,1732$, $1693,1651 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 0.94(\mathrm{t}, J=$ $7.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.22(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.66(\mathrm{q}, J=7.5 \mathrm{~Hz}$, $2 \mathrm{H}), 1.87-2.08(\mathrm{~m}, 2 \mathrm{H}), 2.25-2.42(\mathrm{~m}, 2 \mathrm{H}), 2.88(\mathrm{~s}, 2 \mathrm{H})$, $4.09(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.28-7.50(\mathrm{~m}, 7 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 7.90,14.07,28.87,33.62,34.73,36.91$, $59.14,60.59,128.60,128.63,129.58,130.64,130.88$, 135.51, 171.37, 173.23.

Compound 4d: white solid, mp $120-122^{\circ} \mathrm{C}$; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ $3201,1736,1693,1651 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta$ $0.90(\mathrm{t}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.23-1.37(\mathrm{~m}, 4 \mathrm{H}), 1.57-1.63(\mathrm{~m}$, $2 \mathrm{H}), 1.89-2.09(\mathrm{~m}, 2 \mathrm{H}), 2.30-2.38(\mathrm{~m}, 2 \mathrm{H}), 2.90(\mathrm{~s}, 2 \mathrm{H})$, $3.64(\mathrm{~s}, 3 \mathrm{H}), 6.58(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.26-7.49(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 13.93,22.93,25.70,28.64,35.10,37.52$, $41.06,51.82,58.69,128.69$ (2C), 129.65, 130.58, 130.90 , $135.53,171.02,173.69$.

Synthesis of 5a (Typical procedure): To a stirred mixture of $4 a(273 \mathrm{mg}, 1.0 \mathrm{mmol})$ in aqueous ethanol was added NaOH solution and stirred at room temperature for 3 h . The reaction mixture was poured into cold HCl solution and extracted with EtOAc. After removal of solvent the crude reaction mixture was dissolved in acetic anhydride (2 mL) and heated to $110^{\circ} \mathrm{C}$ for 2 h . After the usual aqueous extractive workup with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and column chromatographic purification process (hexanes/EtOAc, 1:1) we obtained 5a as a white solid, $152 \mathrm{mg}(63 \%)$. Compounds 5 b and 5 c were prepared analogously and the spectroscopic data are as follows.

Compound 5a: white solid, mp 211-213 ${ }^{\circ} \mathrm{C}$; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ $1766,1689,1647,1327 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta$ $1.41(\mathrm{~s}, 3 \mathrm{H}), 2.04-2.28(\mathrm{~m}, 2 \mathrm{H}), 2.63-2.92(\mathrm{~m}, 2 \mathrm{H}), 3.01(\mathrm{~d}$, $J=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.12(\mathrm{~d}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.40-7.46(\mathrm{~m}$, $5 \mathrm{H}), 7.59(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 27.23$, $34.72,35.38,41.77,63.78,128.85,129.70,129.98,131.64$, $134.67,136.96,164.75,171.74$; LCMS $m / z 241\left(\mathrm{M}^{+}\right)$.
Compound 5b: white solid, mp $188-190^{\circ} \mathrm{C}$; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$
$1766,1685,1647,1296 \mathrm{~cm}^{-1} ;$ 'HNMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta$ $0.93(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.71(\mathrm{qd}, J=7.5$ and $2.7 \mathrm{~Hz}, 2 \mathrm{H})$, $2.05-2.17(\mathrm{~m}, 1 \mathrm{H}), 2.29-2.36(\mathrm{~m}, 1 \mathrm{H}), 2.68-2.71(\mathrm{~m}, 1 \mathrm{H})$, $2.78-2.85(\mathrm{~m}, 1 \mathrm{H}), 2.92(\mathrm{dd}, J=16.5$ and $3.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.17$ (dd, $J=16.5$ and $1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.37-7.50(\mathrm{~m}, 5 \mathrm{H}), 7.56(\mathrm{dd}, J$ $=3.3 \mathrm{~Hz}$ and $1.8 \mathrm{~Hz}, 1 \mathrm{H}),{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta$ $8.46,32.93,33.48,34.65,39.32,66.55,128.87,129.66$, $130.02,131.79,134.72,136.22,165.37,172.38$; LCMS m / z 255 (M ${ }^{+}$).

Compound 5 c : white solid, mp $146-148^{\circ} \mathrm{C}$; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ $1766,1693,1647,1284 \mathrm{~cm}^{-1} ;$ 'HNMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta$ $0.86(\mathrm{t}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.25-1.35(\mathrm{~m}, 4 \mathrm{H}), 1.64-1.67(\mathrm{~m}$, $2 \mathrm{H}), 2.09-2.17(\mathrm{~m}, 1 \mathrm{H}), 2.29-2.35(\mathrm{~m}, 1 \mathrm{H}), 2.61-2.70(\mathrm{~m}$, $1 \mathrm{H}), 2.78-2.88(\mathrm{~m}, 1 \mathrm{H}), 2.93(\mathrm{dd}, J=16.8 \mathrm{and} 3.0 \mathrm{~Hz}, 1 \mathrm{H})$, $3.17(\mathrm{dd}, J=16.8$ and $1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.37-7.46(\mathrm{~m}, 5 \mathrm{H}), 7.55$ $(\mathrm{s}, 1 \mathrm{H}),{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 13.83,22.86,26.02$, $33.97,34.65,39.88,40.21,66.19,128.85,129.63,130.02$, $131.78,134.73,136.15,165.31,172.35$; LCMS $m / z 283$ $\left(\mathrm{M}^{+}\right)$.
Synthesis of compounds 1e, 4e, and 5d: Compound 1e was prepared from the reaction of Baylis-Hillman acetate (2.0 equiv) and nitroethane (1.0 equiv) according to the previous method in 85% yield. ${ }^{1,2}$ Reduction of $1 e$ was carried out according to the same procedure for the synthesis of 4 a and we obtained 4 e (33%) and $5 \mathrm{~d}(27 \%)$. The compound 4 e could be converted into $\mathbf{5 d}$ in 58% yield by following the same protocol for the synthesis of 5a. The spectroscopic data of $\mathbf{1 e}, \mathbf{4 e}$, and $\mathbf{5 d}$ are as follows.
Compound 1e: colorless oil; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 1716,1543$, $1439 \mathrm{~cm}^{-1}$; 'H NMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 1.16(\mathrm{~s}, 3 \mathrm{H}), 3.23$ $(\mathrm{s}, 4 \mathrm{H}), 3.73(\mathrm{~s}, 6 \mathrm{H}), 7.11-7.41(\mathrm{~m}, 10 \mathrm{H}), 7.79(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ $\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 20.58,35.42,52.07,90.72$, $127.75,128.54,128.61,128.68,134.95,143.53,168.11$.
Compound 4 e : white solid, mp $75-77{ }^{\circ} \mathrm{C}$; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ $3221,1695,1653 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 1.27$ $(\mathrm{s}, 3 \mathrm{H}), 2.56$ (dd, $J=17.4$ and $2.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.80(\mathrm{dd}, J=17.4$ and $2.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.99(\mathrm{~s}, 2 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 5.86(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, 7.11-7.47 (m, 11H), $7.80(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 75$ $\mathrm{MHz}) \delta 29.61,37.06,39.55,52.40,57.71,128.44$ (2C), $128.51,128.55,128.76,129.02,129.52,130.40,130.74$, $135.58,135.60,142.72,169.25,170.24$.
Compound 5d: white solid, mp $238-240^{\circ} \mathrm{C}$; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ $1751,1643,1319 \mathrm{~cm}^{-1}$; 'H NMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 1.36$ $(\mathrm{s}, 3 \mathrm{H}), 3.12(\mathrm{~d}, J=16.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.22(\mathrm{~d}, J=16.2 \mathrm{~Hz}, 2 \mathrm{H})$, $7.26-7.50(\mathrm{~m}, 10 \mathrm{H}), 7.63(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75\right.$ MHz) $\delta 29.77,41.51,61.45,128.87,129.71,129.98,131.48$, $134.75,136.84,165.23$; LCMS $m / z 329\left(\mathrm{M}^{+}\right)$.
Synthesis of compounds 6 and 7: We prepared compound $6(45 \%)$ and $7(18 \%)$ from 3 e according to the same procedure for the synthesis of $4 a$ and the spectroscopic data are as follows.

Compound 6: colorless oil; $\mathrm{R}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 2962,1709,1651$, $1450,1373 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 1.14(\mathrm{~s}$, $3 \mathrm{H}), 1.35(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.40-1.50(\mathrm{~m}, 1 \mathrm{H}), 1.73-1.82$
$(\mathrm{m}, 1 \mathrm{H}), 1.88(\mathrm{~s}, 3 \mathrm{H}), 2.35-2.41(\mathrm{~m}, 2 \mathrm{H}), 2.90(\mathrm{~d}, J=13.5$ $\mathrm{Hz}, 1 \mathrm{H}), 2.98(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.26(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$, $7.26-7.47(\mathrm{~m}, 5 \mathrm{H}), 7.62(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right)$ $\delta 14.20,19.45,27.60,34.52,36.85,39.03,60.81,76.78$, $127.94,128.31,129.16,131.72,136.07,139.79,169.66$, 172.54.

Compound 7: colorless oil; $\operatorname{IR}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 2966,1705,1227$ $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 1.27(\mathrm{~s}, 3 \mathrm{H}), 1.37(\mathrm{t}, J$ $=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.67-1.77(\mathrm{~m}, 1 \mathrm{H}), 1.93(\mathrm{~s}, 3 \mathrm{H}), 2.07-2.16(\mathrm{~m}$, $1 \mathrm{H}), 2.39-2.44(\mathrm{~m}, 2 \mathrm{H}), 3.03(\mathrm{~d}, J=13.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.39(\mathrm{~d}, J$ $=13.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.28(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.28-7.50(\mathrm{~m}, 5 \mathrm{H})$, $7.78(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 13.01,14.21$, $23.89,29.52,30.32,32.89,61.12,76.82,128.55,128.65$, $129.21,129.35,135.30,141.92,142.96,168.70$.

Acknowledgments. This work was supported by the Korea Research Foundation Grant funded by the Korean Government (MOEHRD) (KRF-2005-041-C00248). Spectroscopic data was obtained from the Korea Basic Science Institute, Gwangju branch.

References and Notes

I. For the synthesis of dihydropyrrolone or dihydropyrrole derivatives from the Baylis-Hillman adducts, see: (a) Basavaiah, D.; Rao, J. S. Tetrahedron Lett. 2004, 45, 1621 . (b) Lee, M. J.; Lee, K. Y.; Park, D. Y.; Kim, J. N. Bull. Korean Chem. Soc. 2005, 26, 1281.
2. For the introduction of nitroalkanes to Baylis-Hillman adducts, see (a) Kim, J. N.; Im, Y. J.; Gong, J. H.; Lee, K. Y. Tetrahedron Lett, 2001, 42, 4195 . (b) Kim, J. M.; Im, Y. J.; Kim, T. H.; Kim, J. N. Bull. Korean Chent. Soc. 2002, 23, 657. (c) Lee, M. J.; Lee, K. Y.; Park, D. Y.; Kim, J. N. Tetrahedron 2006, 62, 3128. (d) Lee, M. J.; Lee, K. Y.; Gowrisankar, S.; Kim, J. N. Tetrahedron Lett. 2006, 47, 1355. (e) Lee, K. Y.; Gowrisankar, S.; Kim, J. N. Bull. Korean Chem. Soc. 2005, 26, 1481.
3. For the synuthesis and biological activities of tetrahydropyrroli-zine-3.5-dione backbone-containing compounds, see: (a) Chen, J.x.; Chai, W.-y.; Zhu, J.-I.; Gao, J.; Chen, W.-x.; Kao, T.-y. Synthesis 1993, 87. (b) El Alami, N.; Belaud, C.; Villieras, J. Synthesis 1993, 1213. (c) Butler, D. E.; Leonard, J. D.; Caprathe, B. W.; L'lalien, Y. J.; Pavia, M. R.; Hershenson, F. M.; Poschel, P. H.; Marriott, J. G. J. Med. Chem. 1987, 30, 498.
4. For the synthesis and biological activities of a variety of pyrrolizine ring-containing compounds, see: (a) Thomas, E. W.; Rynbrandt, R. H.; Zimmermann, D. C.; Bell, L. T.; Muchmore, C. R., Yankee, E. W. J. Org. Chem. 1989, 54, 4535. (b) Ent, H.; De Koning, H.; Speckamp, W. N. J. Org. Chem. 1986, 51, 1687. (c) Denmark, S. E.; Seierstad, M. J. Org. Chem. 1999, 64, 1610. (d) Denmark, S. E.; Schnute, M. E.; Marcin, L. R.; Thorarensen, A. J. Org. Chem. 1995, 60, 3205. (e) Denmark, S. E.; Senanayake, C. B. W. J. Org. Chem. 1993, 58,1853 . (f) Denmark, S. E.; Schnute, M. E.; Senanayake, C. B. W. J. Org. Chem. 1993, 58, 1859 . (g) Brown, S., Clarkson, S.; Grigg, R.; Thomas, W. A.; Sridharan, V.; Wilson, D. M. Tetrahedron 2001, 57, 1347. (h) Fretwell, P., Grigg, R.; Sansano, J. M.; Sridharan, V.; Sukirthalingam, S.; Wilson, D.; Redpath, J. Tetrahedron 2000, 56, 7525. (i) Grigg, R.; Dortity, M. J.; Malone, J. F.; Sridharan, V.; Sukirthalingam, S. Tetrahedron Lett. 1990, 31, 1343. (j) Leonard, N. J.; Felley, D. L. J. Org. Chem. 1950, 72, 2537. (k) Crich, D.; Ranganathan, K.; Neelamkavil, S.; Huang, X. J. Am. Chem. Soc. 2003, 125, 7942.

