Interaction of SO₂ with Oxygen on Ni(100) Studied by XPS and NEXAFS

Chang Min Kim

Department of Chemistry, Kyungpook National University. Daegu 702-701, Korea. E-mail: cmk@knu.ac.kr Received October 17, 2006

The adsorption and surface reactions of SO₂ on Ni(100). $c(2x2)_O/Ni$ (100) and NiO(111)/Ni(100) surfaces have been investigated using X-ray photoelectron spectroscopy (XPS) and near-edge X-ray absorption fine structure (NEXAFS) technique. On Ni(100), chemisorbed SO₂ is formed at 160 K. When SO₂ is adsorbed on $c(2x2)_O/Ni(100)$ at 160 K, SO₂ reacts with oxygen to form SO₃ and trace amount of SO₄ species. SO₃ is adsorbed on this surface with its C₃ axis perpendicular to the surface. On a NiO(111)/Ni(100) surface, both SO₃ and SO₄ species are formed at 160 K from adsorbed SO₂.

Key Words : Ni, NiO, SO₂, NEXAFS, Surface

Introduction

The adsorption and reactions of SO₂ on metal and metal oxide surfaces have received a great deal of attention in surface science studies of catalysis.¹ Sulfur dioxide is used for the production of sulfuric acid. On the other hand, SO₂ is the major component of air pollutants. In addition to the industrial and environmental importance. SO₂ could be a good probe molecule for the fundamental studies of chemisorption on metal and metal oxide surfaces. Compared to CO. SO₂ is a stronger π acceptor and it is more reactive with co-adsorbed species on the surface and its adsorption geometry is more complicated.

The structure of SO₂ adsorbed on Ni single crystal surfaces has been characterized using X-ray photoelectron spectroscopy (XPS), near-edge X-ray absorption fine structure (NEXAFS), and surface extended X-ray absorption fine structure (SEXAFS). Based on NEXAFS and SEXAFS studies, Yokoyama and co-workers reported that SO₂ was chemisorbed on both Ni(100) and Ni(111) at ~170 K with its molecular plane parallel to the surface.² They also reported that the S atom directly interacted with substrate Ni. located at the bridge sites. The normal incident X-ray standing wave (NIXSW) technique study also showed that SO₂ was adsorbed molecularly on Ni(111) at 140 K with its molecular plane parallel to the surface but the S and O atoms were in off-atop sites.³ On Ni(110). SO₂ partly decomposes at 160 K to produce SO₂ and SO₃ species.⁴

We investigated the reaction of SO₂ with oxygen on a Ni (100) surface using XPS and NEXAFS technique. We used $c(2x2)_O/Ni(100)$ and NiO(111)/Ni(100) surfaces for the model study of the interactions of SO₂ with oxygen on Ni surfaces. It was found that SO₂ interacted strongly with coadsorbed oxygen on Ni(100) and surface oxygen on NiO to produce SO₃ and SO₄ species, which were clearly identified using NEXAFS.

Experimental Procedures

The XPS experiment reported here was carried out in an

ultra-high vacuum chamber (UHV) whose base pressure was lower than 2×10^{-10} Torr. The photoelectron spectra were recorded using a non-monochromatic 300 W Al K α X-ray source and a 100 mm radius hemispherical analyzer (model VG Cram2).⁵

The NEXAFS experiment was performed at the BL-11B beam line of the Photon Factory in the National Laboratory for High Energy Physics (KEK-PF). The NEXAFS spectra were obtained by measuring fluorescence yield. The setup of the beam line and the analysis chamber has been described in detail elsewhere.³

The Ni(100) crystal was purchased from Metal Crystals and Oxides and cleaned by using a standard procedure. The $c(2x2)_O/Ni(100)$ surface was prepared by exposing the Ni (100) surface to 40 L of oxygen at 300 K.⁶ (1 L corresponds to 10⁻⁶ torr sec exposure) The NiO(111) surface was produced by exposing the Ni (100) surface to 300 L of oxygen at 300 K.⁷ Gases were introduced to the analysis chamber using a leak valve.

Results and Discussion

XPS analysis. Figure 1 shows the S 2p XPS features of SO₂ adsorbed on Ni(100). c(2x2) O/Ni(100). and NiO(111)/ Ni(100) surfaces. Curve (A) was obtained by exposing the Ni (100) surface to 3 L of SO₂ at 80 K. At this temperature. SO₂ multilayer is formed and the peak at 167.6 eV can be easily assigned as molecularly adsorbed SO₂.⁸ When the Ni (100) surface covered with SO₂ multilayer is heated to 160 K, a new S_2p XPS peak is observed at 165.3 eV (Curve (B)). The peak at 165.3 eV can be assigned as chemisorbed SO₂.⁴ When the surface is heated up to 350 K, SO₂ is completely decomposed and an atomic sulfur peak is observed at 161.8 eV (the spectrum is not shown). Curve (C) and Curve (D) of Figure 1 correspond to XPS features of SO₂ adsorbed on c(2x2) O/Ni(100) and NiO(111)/Ni(100) surfaces at 160 K, respectively. Both surfaces were prepared by dosing 3 L of SO₂ at 80 K followed by annealing briefly at 160 K to desorb multilayer SO_2 . When SO_2 is chemisorbed on a c(2x2)_O/Ni(100) surface. the S_2p XPS peak shows up at

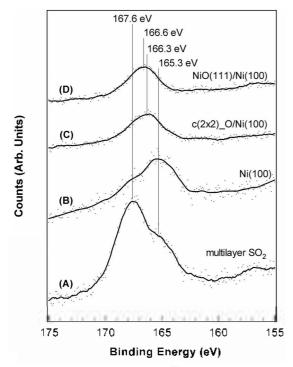
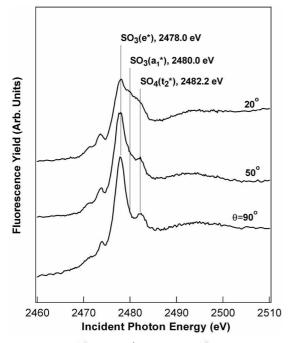


Figure 1. XPS spectra of SO_x species formed on clean and oxygenmodified Ni(100) surfaces. Each surface was prepared as follows. (A) The Ni(100) surface was exposed to 3 L of SO₂ at 80 K (multiplayer SO₂). (B) The Ni(100) surface was exposed to 3 L of SO₂ at 80 K followed by annealing at 160 K for 30 seconds (chemisorbed SO₂). (C) The c(2x2)_O/Ni(100) surface was exposed to 3 L of SO₂ at 80 K followed by annealing at 160 K for 30 seconds. (D) The NiO(111)/Ni(100) surface was exposed to 3 L of SO₂ at 80 K followed by annealing at 160 K for 30 seconds. All spectra were obtained at 80 K.

166.3 eV. The S_2p XPS peak shifts to 166.6 eV when SO₂ is adsorbed on a NiO(111)/Ni(100) surface. It is clear that sulfur is more highly oxidized if SO₂ is co-adsorbed with oxygen on Ni(100). However, it's difficult to tell the difference of SO_x species formed on $c(2x2)_O/Ni(100)$ and NiO(111) surfaces in XPS spectra. In addition to that, the exact stoichiometry of SO_x species adsorbed on oxygenmodified Ni surfaces cannot be determined based on XPS results. The chemical states of the SO_x species adsorbed on $c(2x2)_O/Ni(100)$ and NiO(111)/Ni(100) surfaces were further investigated using sulfur K-edge NEXAFS technique.


NEXAFS investigation. A near-edge X-ray absorption fine structure (NEXAFS) technique has been utilized to investigate SO_x species produced from the surface reaction of SO₂ and oxygen on Ni surfaces. Figure 2 shows the sulfur K-edge NEXAFS features of multiplayer SO₂ (Curve (A)) and chemisorbed (Curve (B) and (C)) SO₂ on Ni(100). Multilayer of SO₂ was prepared by doing 20 L of SO₂ on Ni(100) at 80 K. Chemisorbed SO₂ was produced by dosing 3 L of SO₂ at 80 K followed by annealing at 160 K. The NEXAFS features at 2473.2 eV and 2478.6 eV correspond to the transition of the sulfur 1s-electron to 3b₁ (π^* resonance) and 9a₁ (σ^* resonance) molecular orbitals of SO₂, respectively.² The sulfur K-edge NEXAFS feature of chemisorbed SO₂ shows strong angular dependency. The π^*

3b₁(π*) 9a1(σ*) Fuorescence Yield (Arb. Units) 20 (C) θ=90 (B) Solid SO (A) 2460 2470 2480 2490 2500 2510 Incident Photon Energy (eV)

Figure 2. NEXAFS features of SO₂ adsorbed on Ni(100). (A) Solid SO₂ was produced by dosing 20 L of SO₂ on Ni(100) at 80 K. (B) Chemisorbed SO₂ was formed by dosing 3 L of SO₂ on Ni(100) at 80 K followed by annealing at 160 K. The incident photon beam was normal to the surface. (C) Chemisorbed SO₂. The photon beam was 20° glancing to the surface.

resonance feature shows maximum intensity when the incident photon beam is glancing to the surface (Curve (C)). This feature disappears completely if the photon beam becomes normal to the surface (Curve (B)). This observation clearly indicates that SO₂ is adsorbed on Ni(100) with its molecular plane parallel to the surface. This result agrees very well with the previous report.²

The adsorption and surface reactions of SO₂ on c(2x2) O/ Ni(100) were also investigated by utilizing NEXAFS. Figure 3 shows the sulfur K-edge NEXAFS features of SO_x species adsorbed on c(2x2) O/Ni(100) at 160 K. The surface was prepared by exposing the c(2x2) O/Ni(100) surface to 3 L of SO₂ at 80 K followed by annealing briefly at 160 K. It clearly shows three features at 2478.0 eV. 2480.0 eV, and 2482.4 eV. The intensities of two features at 2478.0 eV and 2480.0 eV show strong angular dependency on the angle of the incident photon beam. The 2480.0 eV feature disappears completely when the photon beam is perpendicular to the surface. This observation indicates that the upper state molecular orbital related to this transition is orientated perpendicular to the surface. That the feature at 2482.4 eV does not show clear angular dependency implies that the upper state molecular orbital related to this transition is totally symmetric. Based on these interpretations, we assign three K-edge features of SO_x species in Figure 3 as follows. The 2478.0 eV and 2480.0 eV features correspond to the transitions of sulfur 1s electrons to $e^{*}(3p\pi)$ and $a_{1}^{*}(3s+3p\sigma)$ orbitals of SO3 species, respectively.9 The 2482.2 eV feature cannot be assigned as the transition to $a_1^*(3d_2)$ or two

Figure 3. NEXAF features of SO_x species formed on $c(2x2)_O/Ni(100)$. The surface was prepared by exposing the $c(2x2)_O/Ni(100)$ surface to 3 L of SO₂ at 80 K followed by annealing at 160 K. The angle θ indicates the angle of the incident photon beam.

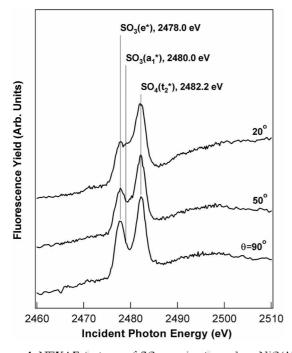


Figure 4. NEXAF features of SO_x species formed on NiO(111)/ Ni(100). The surface was prepared by exposing the NiO(111)/ Ni(100) surface to 3 L of SO₂ at 80 K followed by annealing at 160 K. The angle θ indicates the angle of the incident photon beam.

 $e^*(3d_{x^2-y^2}+3d_{xy}, 3d_{xz}+3d_{yz})$ orbitals of SO₃ species. The transition to a_1^* orbital should be suppressed if the photon beam is normal to the surface and the transition energies to e^* orbitals are much higher than 2482.2 eV. We conclude

that the 2482.2 eV feature is related to the transition of sulfur 1s electrons to the t_2^* orbital of SO₄ species. This observation clearly indicates that SO₂ mainly forms SO₃ on a c(2x2)_O/Ni(100) surface at 160 K. Angular dependency of NEXAFS features also suggests that SO₃ is adsorbed on the surface with its C₃ axis perpendicular to the surface.

The reaction of SO₂ on a NiO surface was investigated using NEXAFS. The NEXAFS features of SO_x species formed at 160 K on a NiO(111)/Ni(100) surface is shown in Figure 4. The surface was prepared by depositing 3 L of SO₂ on the NiO surface at 80 K followed by heating up to 160 K. The sulfur K-edge NEXAFS spectrum of SO_x species formed on NiO(111) shows three absorption features at 2478.0 eV. 2480.0 eV. and 2482.2 eV. The energies of these features are the same as those of SO_x species formed on c(2x2)_O/ Ni(100). In addition to that, the angular dependency of these features is very similar to that of NEXAFS features of SO3 and SO₄ species formed on c(2x2)_O/Ni(100). These observations clearly indicate that both SO3 and SO4 species are formed on NiO(111)/Ni(100). The relative amount of SO₃ and SO₄ cannot be determined exactly based on NEXAFS. However, the amount of SO₄ formed on NiO(111) at 160 K should be much greater than that of SO4 formed on c(2x2)_O/Ni(100) at the same temperature.

Conclusion

The interaction of SO₂ with oxygen on Ni(100) has been investigated with XPS and NEXAFS. The main conclusions are the following:

(1) SO₂. SO₃, and SO₄ species formed on the surface have been clearly identified.

(2) When SO₂ is adsorbed on $c(2x2)_O/Ni(100)$ at 160 K, it forms mainly SO₃. SO₃ is adsorbed on this surface with its C₃ axis perpendicular to the surface.

(3) On NiO(111)/Ni(100), both SO₃ and SO₄ are formed from SO₂ at 160 K.

Acknowledgement. This work was supported in part by the Korean Research Foundation (KRF-2003-042-C20031).

References

- 1. Haase, J. J. Phys.: Condens. Matter 1997, 9, 3647.
- Yokoyama, T.; Terada, S.; Yagi, S.; Imanishi, A.; Takenaka, S.; Kitajima, Y.; Ohta, T. Suof. Sci. 1995, 324, 25.
- Jackson, G. J.; Woodruff, D. P.; Chan, A. S. Y.; Jones, R. G.; Cowie, B. C. C. Surf. Sci. 2005, 577, 31.
- Wilde, L.; Poleik, M.; Haase, J.; Brena, B.; Cocco, D.; Comelli, G.; Paolucci, G.; Surf. Sci. 1998, 405, 215.
- 5. Kim, C. M.; Jeong, H. S.; Kim, E. H. Surf, Sci. 2000, 459, L457.
- Wang, W.-D.: Wu, N. J.: Thiel, P. A. J. Chem. Phys. 1992, 92, 2025.
- Hall, R. B.: Mims, C. A.; Hardenbergh, J. H.: Chen, J. G. ACS Symp. Ser. 1992, 482, 85.
- Wagner, C. D.; Taylor, J. A. J. Electron Spectrosc. Relat. Phenom. 1982, 28, 211.
- Sekiyama, H.; Kosugi, N.; Kuroda, H.; Ohta, T. Bull. Chem. Soc. Jpn. 1986, 59, 575.