DOI QR코드

DOI QR Code

Understanding the RNA-Specificity of HCV RdRp: Implications for Anti-HCV Drug Discovery

  • Kim, Jin-young (Department of Biomedical Science and Technology, Konkuk University) ;
  • Chong, You-hoon (Department of Biomedical Science and Technology, Konkuk University)
  • 발행 : 2006.01.20

초록

Unlike other viral polymerases, HCV RNA-dependent RNA polymerase (RdRp) has not been successfully inhibited by nucleoside analogues presumably due to its strong substrate specificity for RNA. Thus, in order to understand the RNA-specificity of HCV RdRp, the structural characteristics of the active site was investigated. The hereto unknown 2-OH binding pocket at the active site of RdRp provides invaluable implication for the development of novel anti-HCV nucleoside analogues.

키워드

참고문헌

  1. Alter, M. J.; Kruszon-Moran, D.; Nainan, O. V.; McQuillan, G. M.; Gao, F.; Moyer, L. A.; Kaslow, R. A.; Margolis, H. S. N. Engl. J. Med. 1999, 341, 556-562 https://doi.org/10.1056/NEJM199908193410802
  2. Choo, Q.-L.; Kuo, G.; Weiner, A. J.; Overby, R. L.; Bradley, D. W.; Houghton, M. Science 1989, 244, 359-362
  3. Saito, I.; Miyamura, T.; Ohbayashi, A.; Katayama, T.; Kikuchi, S.; Watanabe, Y.; Koi, S. Proc. Natl. Acad. Sci. U.S.A. 1990, 87, 6547-6549 https://doi.org/10.1073/pnas.87.17.6547
  4. Hwang, S. B.; Park, K.-J.; Kim, Y.-S.; Sung, Y. C.; Lai, M. M. C. Virology 1997, 227, 439-446 https://doi.org/10.1006/viro.1996.8357
  5. Behrens, S.-E.; Tomei, L.; De Francesco, R. EMBO J. 1996, 15, 12-22
  6. Takamizawa, A.; Mori, C.; Fuke, I.; Manabe, S.; Murakami, S.; Fujita, J.; Onishi, E.; Andoh, T.; Yoshida, I.; Okayama, H. J. Virol. 1991, 65, 1105-1113
  7. Kim, J.; Lee, M.; Kim, Y.-Z. Bull. Korean. Chem. Soc. 2005, 26, 285 https://doi.org/10.5012/bkcs.2005.26.2.285
  8. Ishii, K.; Tanaka, Y.; Yap, C. C.; Aizaki, H.; Matsuura, Y.; Miyamura, T. Hepatology 1999, 29, 1227-1235 https://doi.org/10.1002/hep.510290448
  9. Ferrari, E.; Wright-Minogue, J.; Fang, J. W.; Baroudy, B. M.; Lau, J. Y.; Hong, Z. J. Virol. 1999, 73, 1649-1654
  10. Johnson, R. B.; Sun, X. L.; Hockman, M. A.; Villarreal, E. C.; Wakulchik, M.; Wang, Q. M. Arch. Biochem. Biophys. 2000, 377, 129-134 https://doi.org/10.1006/abbi.2000.1749
  11. Gasteiger, J.; Marsili, M. Tetrahedron 1980, 36, 3219-322 https://doi.org/10.1016/0040-4020(80)80168-2
  12. Purcell, W. P.; Singer, J. A. J. Chem. Eng. Data 1967, 12, 235-246 https://doi.org/10.1021/je60033a020
  13. Blaney, J. M.; Weiner, P. K.; Dearing, A.; Kollman, P. A.; Jorgensen, E. C.; Oatley, S. J.; Burridge, J. M.; Blake, C. C. F. J. Am. Chem. Soc. 1982, 104, 6424-6434 https://doi.org/10.1021/ja00387a046
  14. Wipff, G.; Dearing, A.; Weiner, P. K.; Blaney, J. M.; Kollman, P. A. J. Am. Chem. Soc. 1983, 105, 997-1005 https://doi.org/10.1021/ja00342a059
  15. Chong, Y.; Borroto-Esoda, K.; Furman, P. A.; Schinazi, R. F.; Chu, C. K. Antivir. Chem. Chemother. 2002, 13, 115-128 https://doi.org/10.1177/095632020201300205
  16. Tomei, L.; Vitale, R. L.; Incitti, I.; Serafini, S.; Altamura, S.; Vitelli, A. J. Gen. Virol. 2000, 81, 759-767 https://doi.org/10.1099/0022-1317-81-3-759
  17. Bressanelli, S.; Tomei, L.; Roussel, A.; Incitti, I.; Vitale, R. L.; Mathieu, M. Proc. Natl. Acad. Sci. U.S.A. 1999, 96, 13034-13039 https://doi.org/10.1073/pnas.96.23.13034
  18. Ago, H.; Adachi, T.; Yoshida, A.; Yamamoto, M.; Habuka, N.; Yatsunami, K. Structure Fold Des. 1999, 7, 1417-1426 https://doi.org/10.1016/S0969-2126(00)80031-3
  19. Lesburg, C. A.; Cable, M. B.; Ferrari, E.; Hong, Z.; Mannarino, A. F.; Weber, P. C. Nat. Struct. Biol. 1999, 6, 937-943 https://doi.org/10.1038/13305
  20. Huang, H.; Chopra, R.; Verdine, G. L.; Harrison, S. C. Science 1998, 282, 1669-1675 https://doi.org/10.1126/science.282.5394.1669
  21. Lohmann, V.; Korner, F.; Herian, U.; Bartenschlager, R. J. Virol. 1997, 71, 8416-8428
  22. Steitz, T. A. J. Biol. Chem. 1999, 274, 17395-17398 https://doi.org/10.1074/jbc.274.25.17395
  23. Yamashita, T.; Kaneko, S.; Shirota, Y.; Qin, W.; Nomura, T.; Kobayashi, K. J. Biol. Chem. 1998, 273, 15479-15486 https://doi.org/10.1074/jbc.273.25.15479
  24. Chu, C. K. Antiviral Nucleosides: Chiral Synthesis and Chemotherapy; Elsevier: Amsterdam, Neth., 2003
  25. Tomassini, J. E.; Getty, K.; Stahlhut, M. W.; Shim, S.; Bhat, B.; Eldrup, A. B.; Prakash, T. P.; Carroll, S. S.; Flores, O.; MacCoss, M.; McMasters, D. R.; Migliaccio, G.; Olsen, D. B. Antimicrob. Agents Chemother. 2005, 49, 2050-2058 https://doi.org/10.1128/AAC.49.5.2050-2058.2005
  26. Eldrup, A. B.; Prhavc, M.; Brooks, J.; Bhat, B.; Prakash, T. P.; Song, Q.; Bera, S.; Bhat, N.; Dande, P.; Dan Cook, P.; Bennett, C. F.; Carroll, S. S.; Ball, R. G.; Bosserman, M.; Burlein, C.; Colwell, L. F.; Fay, J. F.; Flores, O. A.; Getty, K.; LaFemina, R. L.; Leone, J.; MacCoss, M.; McMasters, D. R.; Tomassini, J. E.; Von Langen, D.; Wolanski, B.; Olsen, D. B. J. Med. Chem. 2004, 47, 5284-5297 https://doi.org/10.1021/jm040068f

피인용 문헌

  1. Nucleotide Prodrugs of 2′-Deoxy-2′-spirooxetane Ribonucleosides as Novel Inhibitors of the HCV NS5B Polymerase vol.57, pp.5, 2014, https://doi.org/10.1021/jm4015422
  2. Thiobarbituric Acid Derivatives for Anti-HCV Agents Targeting NS5B RNA Polymerase vol.28, pp.11, 2006, https://doi.org/10.5012/bkcs.2007.28.11.1917
  3. 2′-Deoxy-2′-spirocyclopropylcytidine Revisited: A New and Selective Inhibitor of the Hepatitis C Virus NS5B Polymerase vol.53, pp.22, 2010, https://doi.org/10.1021/jm101050a