DOI QR코드

DOI QR Code

Determination of Boron Isotopic Ratio by Using an Alpha Track Technique

  • Park, Yong-Joon (Nuclear Chemistry Research Division, Korea Atomic Energy Research Institute) ;
  • Pyo, Hyung-Yeal (Nuclear Chemistry Research Division, Korea Atomic Energy Research Institute) ;
  • Song, Kyu-Seok (Nuclear Chemistry Research Division, Korea Atomic Energy Research Institute) ;
  • Song, Byoung-Chul (Nuclear Chemistry Research Division, Korea Atomic Energy Research Institute) ;
  • Jee, Kwang-Yong (Nuclear Chemistry Research Division, Korea Atomic Energy Research Institute) ;
  • Kim, Won-Ho (Nuclear Chemistry Research Division, Korea Atomic Energy Research Institute)
  • Published : 2006.10.20

Abstract

The determination of the boron isotopic ratio in solutions was achieved by means of a solid state track detector by using an alpha track. The neutron flux was optimized by using a Cd-foil to find the optimum conditions for counting the number of alpha tracks on the selected solid detector caused by the (n, $\alpha$) nuclear reaction of boron. The home-made multi-dot detector plate was utilized in this study to increase the reproducibility of the measurement by uniformly drying the boron solution within the marked circle area on the detector plate. The experimental results of this study verified that the $^{11}B/^{10}B $ isotopic ratio can be measured by observing the number of alpha tracks for different concentrated standard solutions with various isotopic compositions. This technique was applied to the determination of $^{10}B$ enrichment factor in a biological sample for a boron neutron capture therapy.

Keywords

References

  1. Probst, T. U. Fresenius J. Anal. Chem. 1999, 364, 391 https://doi.org/10.1007/s002160051356
  2. You, C. F.; Spivack, A. J.; Gieskes, J. M.; Rosenbauer, R.; Bischoff, J. L. Geochimica et Cosmochimica Acta 1995, 59, 2435 https://doi.org/10.1016/0016-7037(95)00137-9
  3. Palmer, M. R.; Helvaci, C. Geochimica et Cosmochimica Acta 1957, 61/15, 3161
  4. May, P. W.; Rosser, K. N.; Fox, N. A.; Younes, C. M.; Beardmore, G. Diamond and Related Materials 1997, 6, 450 https://doi.org/10.1016/S0925-9635(96)00635-8
  5. Jiang, S.; Palmer, M. R.; Peng, Q.; Yang, J. Chemical Geology 1997, 135, 189 https://doi.org/10.1016/S0009-2541(96)00115-5
  6. Pillay, A. E.; Peisach, M. J. Radioanal. Nucl. Chem. 1991, 151, 379 https://doi.org/10.1007/BF02035498
  7. Sekerka, I.; Lechner, J. F. Analytica Chimica Acta 1990, 234, 199 https://doi.org/10.1016/S0003-2670(00)83557-6
  8. Jeon, Y. S.; Cho, K. S.; Han, S. H.; Park, Y. J.; Jee, K. Y. Analytical Science and Technology 2005, 18, 27
  9. Hemming, N. G.; Hanson, G. N. Chem. Geol. 1994, 114, 147 https://doi.org/10.1016/0009-2541(94)90048-5
  10. Yanagie, H.; Ogura, K.; Matsumoto, T.; Eriguchi, M.; Kobayashi, H. Nucl. Instr. Met. Phys. Res. A 1999, 424/1, 122
  11. Park, Y. J.; Pyo, H. Y.; Song, B. C.; Jee, K. Y. Analytical Science and Technology 2004, 17, 434
  12. Miller, J. C.; Miller, J. N. Statistics for Analytical Chemistry, 2nd ed.; Ellis Horwood Limited: 1988; p 115

Cited by

  1. Development of Particle Induced Gamma-Ray Emission Methods for Nondestructive Determination of Isotopic Composition of Boron and Its Total Concentration in Natural and Enriched Samples vol.86, pp.22, 2014, https://doi.org/10.1021/ac5024292
  2. New Inorganic Boron Assessment in environmental Samples by Neutron Activation Analysis using CR-39 Solid State Nuclear Track Detectors. vol.779, pp.1, 2006, https://doi.org/10.1088/1755-1315/779/1/012067