Rhenium Tellurobromide $\operatorname{Re}_{6} \mathbf{T e}_{16} \mathbf{B r}_{6}$

Yuri V. Mironov, ${ }^{\dagger,+,{ }^{*}}$ Sung-Jin Kim, ${ }^{\ddagger,{ }^{*}}$ and Vladimir E. Fedorov ${ }^{\dagger}$
${ }^{\dagger}$ Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3, Acad. Lavrentiev pr., 630090, Novosibirsk, Russia. *E-mail: yuri@che.nsk.su
${ }^{\dagger}$ Division of Nano Sciences and Department of Chemistry, Ewha Womans University, Seoul 120-750, Korea
*E-mail: sjkim@ewha.ac.kr
Received April 6, 2006

Key Words: Rhenium, Octahedral cluster, Tellurobromide, Crystal structure

Whereas Re_{6} octahedral thio- and selenium halide clusters are well known ${ }^{14}$ only few examples of tellurium halide clusters are known. ${ }^{5-8}$ The known data have demonstrated that there is essential difference in the compositions and structures of chalcohalides containing cluster core $\left\{\operatorname{Re}_{6} \mathrm{Q}_{8}\right\}$ for $\mathrm{Q}=\mathrm{Te}$ compounds and S / Se derivatives. Earlier it was shown that in the compounds with cluster core $\left\{\operatorname{Re}_{6} \mathrm{Q}_{8}\right\}$ often Te-rich compounds are formed in which Re atoms are coordinated by Te atoms of different unusual ligands such as neutral Te_{6} and $\mathrm{TeCl}_{3}{ }^{-}$found in $\mathrm{Re}_{6} \mathrm{Te}_{16} \mathrm{Cl}_{6}, \mathrm{Te}_{16} \mathrm{Cl}_{18}{ }^{2-}$ in $\operatorname{Re}_{6} \mathrm{Te}_{16} \mathrm{Cl}_{18}{ }^{6}$ or TeCl_{2} in $\mathrm{Re}_{6} \mathrm{Te}_{6} \mathrm{Cl}_{10}$ and TeBr_{2} in $\mathrm{Re}_{6} \mathrm{Te}_{14} \mathrm{Br}_{14} \cdot{ }^{7}$ As is evident from these data the chemistry of cluster rhenium tellurobromides is poorly understood. In this work we have continued the study of $\mathrm{Re}-\mathrm{Te}-\mathrm{Br}$ system and prepared a new tellurobromide $\mathrm{Re}_{6} \mathrm{Te}_{16} \mathrm{Br}_{6}$.
The title compound, $\mathrm{Re}_{6} \mathrm{Te}_{16} \mathrm{Br}_{6}$ is isostructural to known $\operatorname{Re}_{6} \mathrm{Te}_{16} \mathrm{Cl}_{6}{ }^{6}{ }^{6}$ It may be described as $\left[\left\{\mathrm{Re}_{6} \mathrm{Te}_{8}\right\}\left(\mathrm{Te}_{6}\right)\left(\mathrm{TeBr}_{3}\right)_{2}\right]$ where cluster cores $\left\{\operatorname{Re}_{6} \mathrm{Te}_{8}\right\}$ are joined together by neutral Te_{6} and $\left[\mathrm{TeBr}_{3}\right]^{-}$ligands. The cluster core $\left\{\mathrm{Re}_{6} \mathrm{Te}_{8}\right\}$ has a crystallogrophically imposed twofold axes. The bond lengths and angles in cluster core are similar to those observed in others compounds with $\left\{\mathrm{Re}_{6} \mathrm{Te}_{8}\right\}$ cluster core. In $\mathrm{Re}_{6} \mathrm{Te}_{16} \mathrm{Br}_{6}$

Figure 1. Structure of $\mathrm{Re}_{6} \mathrm{Te}_{16} \mathrm{Br}_{6}$ viewed along [001]. Displacement ellipsoids are drawn at the 75% probability level.
two rhenium atoms at opposite vertices of the Re_{6} octahedron are capped by $\left[\mathrm{TeBr}_{3}\right]^{-}$ligands (Fig. 1). The four remaining Re atoms are capped with neutral Te_{6} ligands. The Te_{6} ligands have a chair conformation as in $\mathrm{Re}_{6} \mathrm{Te}_{16} \mathrm{Cl}_{6}$ and recently described $\left(\mathrm{AgI}_{2}\right)_{2} \mathrm{Te}_{6} .{ }^{9}$ In Te_{6} units $\mathrm{Te}-\mathrm{Te}$ bond lengths are ranging from $2.770(2)$ to $2.930(2) \AA$ in the title compound, from 2.762(4) to 2.899(5) \AA in $\mathrm{Re}_{6} \mathrm{Te}_{16} \mathrm{Cl}_{6}$ and equal to $2.729(1)$ and $2.760(1) \AA$ in $\left(\mathrm{AgI}_{2}\right)_{2} \mathrm{Te}_{6}$. In the present structure each Te_{6} species are chelated four $\mathrm{Re}_{6} \mathrm{Te}_{8}\left(\mathrm{TeBr}_{3}\right)_{2}$ clusters ($\mathrm{Re}-\mathrm{Te}$ distances are 2.6567(13)$2.7166(13) \AA$) forming a two-dimensional network (Fig. 2). The four Re -bound Te atoms of the Te_{6} chair are coplanar. The $\mathrm{Te}-\mathrm{Br}$ bond lengths in the $\left[\mathrm{TeBr}_{3}\right]^{-}$ligands are 2.574(2), $2.585(2)$ and $2.969(2) \AA$. The Br atom that forms the longer $\mathrm{Te}-\mathrm{Br}$ bond interacts further with Te^{2+} center of a $\left[\mathrm{TeBr}_{3}\right]^{-}$ ligand from an adjacent layer, creating a square-planar geometry around the Te^{2+} center $\left(\mathrm{Br}_{3} \mathrm{Te} \cdots \mathrm{Br}\right.$ distance is equal to $3.024(2) \AA, \mathrm{Br}-\mathrm{Te}-\mathrm{Br}$ angles are in the range 84.755(7) $\left.{ }^{\mathrm{o}}-94.56(7)^{\circ}\right)$.

Experimental Section

Synthesis. The title compound was prepared by the reaction of $\mathrm{Re}_{6} \mathrm{Te}_{15}$ with elemental Te and Br_{2} taken in molar

Figure 2. Structure of $\mathrm{Re}_{6} \mathrm{Te}_{16} \mathrm{Br}_{6}$ viewed along [100]. Displacement ellipsoids are drawn at the 75% probability level.

Table 1. Selected bond length (\AA) and angles $\left({ }^{\circ}\right)$

Bond	length (\AA)	Bond	length (\AA)
Re1-Te3	2.6761(12)	Re3-Te3 ${ }^{i}$	2.6567(13)
Re1-Re2	2.6849(10)	Re3-Te1	$2.6590(12)$
Re1-Re3	$2.6880(9)$	Re3-Te2	2.6790 (16)
$\mathrm{Re} 1-\mathrm{Re} 1^{i}$	2.6948 (13)	Re3-Te4	$2.6892(15)$
$\mathrm{Re} 1-\mathrm{Re} 3^{i}$	$2.6958(10)$	Re3-Te8	$2.7307(13)$
$\mathrm{Re} 1-\mathrm{Te} 2$	2.7057(13)	$\mathrm{Te} 5-\mathrm{Te} 7^{7 i}$	2.7749 (17)
$\mathrm{Re} 1-\mathrm{Te} 1$	2.7085(13)	Te5-Te5 ${ }^{\text {iii }}$	2.928 (2)
Re1-Te5	2.7086(13)	Te6-Te7	$2.7703(17)$
$\mathrm{Re} 1-\mathrm{Te} 2{ }^{i}$	2.7166 (13)	Te6-Te6 ${ }^{\text {iii }}$	2.930(2)
$\mathrm{Re} 2-\mathrm{Te} 3$	2.6844(13)	Te8-Br2	2.574(2)
Re2-Re3	2.6919 (10)	Te8-Br3	2.585(2)
$\mathrm{Re} 2-\mathrm{Re} 3^{i}$	2.6960 (10)	Te8-Br1	2.969(2)
$\mathrm{Re} 2-\mathrm{Te} 1$	2.7046 (13)		
Re2-Te4	2.7047(13)	Angle	$\left({ }^{\circ}\right)$
$\mathrm{Re} 2-\mathrm{Te} 4^{i}$	2.7072(14)	$\mathrm{Te} 7^{i i}-\mathrm{Te} 5-\mathrm{Te} 5^{\text {iii }}$	93.21(5)
$\mathrm{Re} 2-\mathrm{Re} 2^{i}$	2.7077(14)	Te7-Te6-Te6 ${ }^{\text {iii }}$	93.31(5)
Re2-Te6	2.7199(13)	Te6-Te7-Te5 ${ }^{\text {iv }}$	106.37(5)

Symmetry codes: (i) $-\mathrm{x},-\mathrm{y}, \mathrm{z}$; (ii) $\mathrm{x}, \mathrm{y}, 1+\mathrm{z}$; (iii) $-\mathrm{x}, 1-\mathrm{y}, \mathrm{z}$; (iv) $\mathrm{x}, \mathrm{y}, \mathrm{z}-1$.
ratio $1: 2: 5$. An excess of Te and Br_{2} were taken to promote the growth of single crystals of title compound. The synthesis was carried in an evacuated fused-silica tube heated at 723 K for 48 hours and then cooled 12 hours to room temperature. The reaction mixture was washed with $\mathrm{CH}_{3} \mathrm{CN}$. Single crystals suitable for X-ray analysis were selected from reaction mixture.
X-ray Crystallography: Single-crystal X-ray diffraction data were collected on $\mathrm{Re}_{6} \mathrm{Te}_{16} \mathrm{Br}_{6}$ using graphite-monochromotized MoK_{α} radiation $(\lambda=0.71073 \AA$) with a Bruker Smart APEX CCD diffractometer with the operating program SMART. A face-indexed absorption correction was performed numerically with the use of XPREP. The program SADABS was then employed to make incident beam and
decay corrections: $\mathrm{T}_{\min }=0.1697, \mathrm{~T}_{\max }=0.4916$. The structure was solved by direct method with the SHELX-97 program set ${ }^{10}$ for structure solution (direct methods) and refinement (full-matrix least-squares on F^{2}).
$\mathbf{R e}_{6} \mathbf{T e}_{16} \mathbf{B r}_{6}:(\mathrm{M}=3638.26)$, crystal size $0.1 \times 0.024 \times$ 0.018 mm , orthorhombic space group $P 2_{1} 2_{1} 2, a=18.466(4)$, $b=8.5102(18), c=10.784(2) \AA, V=1694.8(6) \AA^{3}, Z=2$, $\rho_{\text {calcd }}=7.130 \mathrm{~g} \mathrm{~cm}^{-3}, \mu=41.912 \mathrm{~mm}^{-1} .2 .19<\theta<28,29^{\circ}, T$ $=295(2) K$. Reflections: 10528 collected, 3964 unique $\left(R_{\text {int }}\right.$ $=0.0432$), 3093 observed $[I>2 \sigma(I)] ; 127$ parameters refined with $R=0.0343[I>2 \sigma(I)], w R_{2}=0.0709$ (all data). GOF $=0.940$, residual electron density: $+4.328,-1.680 \mathrm{e}^{\AA^{-3}}$. Flack parameter $=0.008(10)$.

Acknowledgements. This work was supported by the Korea Research Foundation (KRF-2004-005-C0093).

References

1. Perrin, A.; Sergent, M. New J. Chem. 1988, 12, 337-356.
2. Saito, T. J. Chem. Soc., Dalton Trans. 1999, 97-105.
3. Mironov, Y. V.; Fedorov, V. E. J. Struct. Chem. (Engl. Trans.) 1999, 40, 959-974.
4. Gabriel, J.-C. P.; Boubekeur, K.; Uriel, S.; Batail, P. Chem. Rev. 2001, 101, 2037-2066.
5. Yarovoi, S. S.; Mironov, Y. I.; Mironov, Y. V.; Virovets, A. V.; Fedorov, V. E.; Paek, U.-H.; Shin, S. C.; Seo, M. L. Mat. Res. Bull. 1997, 32, 1271-1277.
6. Mironov, Y. V.; Pell, M. A.; Ibers, J. A. Angew. Chem. Int. Ed. Engl. 1996, 35, 2854-2856.
7. Mironov, Y. V.; Pell, M. A.; Ibers, J. A. Inorg. Chem. 1996, 35, 2709-2710.
8. Mironov, Y. V.; Cody, J. A.; Ibers, J. A. Acta Cryst. 1996, C52, 281-283.
9. Deiseroth, H.-J.; Wagener, M.; Neumann, E. Eur. J. Inorg. Chem. 2004, 4755-4758.
10. (a) Sheldrick, G. M. SHELXS-97, Program for Crystal Structure Solution; Göttingen; (b) G. M. Sheldrick, SHELXL-97, Program for Crystal Structure Refinement; Göttingen.
