Rhenium Tellurobromide Re₆Te₁₆Br₆

Yuri V. Mironov,^{†,‡,*} Sung-Jin Kim,^{‡,*} and Vladimir E. Fedorov[†]

^{*}Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3, Acad. Lavrentiev pr., 630090, Novosibirsk, Russia. ^{*}E-mail: yuri@che.nsk.su

^{*}Division of Nano Sciences and Department of Chemistry, Ewha Womans University, Seoul 120-750, Korea

*E-mail: sjkim@ewha.ac.kr

Received April 6, 2006

Key Words : Rhenium, Octahedral cluster, Tellurobromide, Crystal structure

Whereas Re_6 octahedral thio- and selenium halide clusters are well known¹⁻⁴ only few examples of tellurium halide clusters are known.⁵⁻⁸ The known data have demonstrated that there is essential difference in the compositions and structures of chalcohalides containing cluster core { Re_6Q_8 } for Q=Te compounds and S/Se derivatives. Earlier it was shown that in the compounds with cluster core { Re_6Q_8 } often Te-rich compounds are formed in which Re atoms are coordinated by Te atoms of different unusual ligands such as neutral Te₆ and TeCl₃⁻ found in Re₆Te₁₆Cl₆, Te₁₆Cl₁₈²⁻ in Re₆Te₁₄Br₁₄.⁷ As is evident from these data the chemistry of cluster rhenium tellurobromides is poorly understood. In this work we have continued the study of Re-Te-Br system and prepared a new tellurobromide Re₆Te₁₆Br₆.

The title compound, $Re_6Te_{16}Br_6$ is isostructural to known $Re_6Te_{16}Cl_{6.}^6$ It may be described as $[{Re_6Te_8}(Te_6)(TeBr_3)_2]$ where cluster cores ${Re_6Te_8}$ are joined together by neutral Te_6 and $[TeBr_3]^-$ ligands. The cluster core ${Re_6Te_8}$ has a crystallogrophically imposed twofold axes. The bond lengths and angles in cluster core are similar to those observed in others compounds with ${Re_6Te_8}$ cluster core. In $Re_6Te_{16}Br_6$

Figure 1. Structure of $Re_6Te_{16}Br_6$ viewed along [001]. Displacement ellipsoids are drawn at the 75% probability level.

two rhenium atoms at opposite vertices of the Re₆ octahedron are capped by [TeBr₃] ligands (Fig. 1). The four remaining Re atoms are capped with neutral Te₆ ligands. The Te₆ ligands have a chair conformation as in Re₆Te₁₆Cl₆ and recently described (AgI₂)₂Te₆.⁹ In Te₆ units Te-Te bond lengths are ranging from 2.770(2) to 2.930(2) Å in the title compound, from 2.762(4) to 2.899(5) Å in Re₆Te₁₆Cl₆ and equal to 2.729(1) and 2.760(1) Å in (AgI₂)₂Te₆. In the present structure each Te6 species are chelated four Re₆Te₈(TeBr₃)₂ clusters (Re-Te distances are 2.6567(13)-2.7166(13) Å) forming a two-dimensional network (Fig. 2). The four Re-bound Te atoms of the Te_6 chair are coplanar. The Te-Br bond lengths in the $[TeBr_3]^-$ ligands are 2.574(2), 2.585(2) and 2.969(2) Å. The Br atom that forms the longer Te-Br bond interacts further with Te²⁺ center of a [TeBr₃]⁻ ligand from an adjacent layer, creating a square-planar geometry around the Te²⁺ center (Br₃Te ···Br distance is equal to 3.024(2) Å, Br-Te-Br angles are in the range $84.755(7)^{\circ} - 94.56(7)^{\circ}$).

Experimental Section

Synthesis. The title compound was prepared by the reaction of $\text{Re}_6\text{Te}_{15}$ with elemental Te and Br_2 taken in molar

Figure 2. Structure of $Re_6Te_{16}Br_6$ viewed along [100]. Displacement ellipsoids are drawn at the 75% probability level.

Table 1. Selected bond length (Å) and angles (°))
--	---

Bond	length (Å)	Bond	length (Å)
Re1–Te3	2.6761(12)	Re3–Te3 ^{<i>i</i>}	2.6567(13)
Re1–Re2	2.6849(10)	Re3-Te1	2.6590(12)
Re1–Re3	2.6880(9)	Re3-Te2	2.6790(16)
Re1–Re1 ^{<i>i</i>}	2.6948(13)	Re3-Te4	2.6892(15)
Re1–Re3 ⁱ	2.6958(10)	Re3–Te8	2.7307(13)
Re1–Te2	2.7057(13)	Te5–Te7 ⁱⁱ	2.7749(17)
Re1–Te1	2.7085(13)	Te5-Te5 ⁱⁱⁱ	2.928(2)
Re1–Te5	2.7086(13)	Te6–Te7	2.7703(17)
Re1–Te2 ⁱ	2.7166(13)	Te6–Te6 ⁱⁱⁱ	2.930(2)
Re2–Te3	2.6844(13)	Te8-Br2	2.574(2)
Re2–Re3	2.6919(10)	Te8-Br3	2.585(2)
Re2–Re3 ⁱ	2.6960(10)	Te8-Br1	2.969(2)
Re2-Te1	2.7046(13)		
Re2–Te4	2.7047(13)	Angle	(°)
Re2–Te4 ⁱ	2.7072(14)	Te7 ⁱⁱ –Te5–Te5 ⁱⁱⁱ	93.21(5)
Re2–Re2 ⁱ	2.7077(14)	Te7-Te6-Te6 ⁱⁱⁱ	93.31(5)
Re2–Te6	2.7199(13)	Te6–Te7–Te5 ^{iv}	106.37(5)

Symmetry codes: (i) -x, -y, z; (ii) x, y, 1+z; (iii) -x, 1-y, z; (iv) x, y, z-1.

ratio 1:2:5. An excess of Te and Br_2 were taken to promote the growth of single crystals of title compound. The synthesis was carried in an evacuated fused-silica tube heated at 723 K for 48 hours and then cooled 12 hours to room temperature. The reaction mixture was washed with CH₃CN. Single crystals suitable for X-ray analysis were selected from reaction mixture.

X-ray Crystallography: Single-crystal X-ray diffraction data were collected on Re₆Te₁₆Br₆ using graphite-monochromotized MoK_{α} radiation ($\lambda = 0.71073$ Å) with a Bruker Smart APEX CCD diffractometer with the operating program SMART. A face-indexed absorption correction was performed numerically with the use of XPREP. The program SADABS was then employed to make incident beam and decay corrections: $T_{min} = 0.1697$, $T_{max} = 0.4916$. The structure was solved by direct method with the SHELX-97 program set¹⁰ for structure solution (direct methods) and refinement (full-matrix least-squares on F^2).

Re₆Te₁₆Br₆: (M = 3638.26), crystal size $0.1 \times 0.024 \times 0.018$ mm, orthorhombic space group $P2_12_12$, a = 18.466(4), b = 8.5102(18), c = 10.784(2) Å, V = 1694.8(6) Å³, Z = 2, $\rho_{calcd} = 7.130$ g cm⁻³, $\mu = 41.912$ mm⁻¹. $2.19 < \theta < 28, 29^{\circ}$, T = 295(2) K. Reflections: 10528 collected, 3964 unique ($R_{int} = 0.0432$), 3093 observed [$I > 2\sigma(I)$]; 127 parameters refined with R = 0.0343 [$I > 2\sigma(I)$], $wR_2 = 0.0709$ (all data). GOF = 0.940, residual electron density: + 4.328, -1.680 eÅ⁻³. Flack parameter = 0.008 (10).

Acknowledgements. This work was supported by the Korea Research Foundation (KRF-2004-005-C0093).

References

- 1. Perrin, A.; Sergent, M. New J. Chem. 1988, 12, 337-356.
- 2. Saito, T. J. Chem. Soc., Dalton Trans. 1999, 97-105.
- Mironov, Y. V.; Fedorov, V. E. J. Struct. Chem. (Engl. Trans.) 1999, 40, 959-974.
- Gabriel, J.-C. P.; Boubekeur, K.; Uriel, S.; Batail, P. Chem. Rev. 2001, 101, 2037-2066.
- Yarovoi, S. S.; Mironov, Y. I.; Mironov, Y. V.; Virovets, A. V.; Fedorov, V. E.; Paek, U.-H.; Shin, S. C.; Seo, M. L. *Mat. Res. Bull.* 1997, *32*, 1271-1277.
- Mironov, Y. V.; Pell, M. A.; Ibers, J. A. Angew. Chem. Int. Ed. Engl. 1996, 35, 2854-2856.
- Mironov, Y. V.; Pell, M. A.; Ibers, J. A. Inorg. Chem. 1996, 35, 2709-2710.
- Mironov, Y. V.; Cody, J. A.; Ibers, J. A. Acta Cryst. 1996, C52, 281-283.
- Deiseroth, H.-J.; Wagener, M.; Neumann, E. Eur. J. Inorg. Chem. 2004, 4755-4758.
- (a) Sheldrick, G. M. SHELXS-97, Program for Crystal Structure Solution; Göttingen; (b) G. M. Sheldrick, SHELXL-97, Program for Crystal Structure Refinement; Göttingen.