DOI QR코드

DOI QR Code

Quantitative Structure-Activity Relationships and Molecular Docking Studies of P56 LCK Inhibitors

  • Bharatham, Nagakumar (Division of Applied Life Science, Environmental Biotechnology National Core Research Center, Gyongsang National University) ;
  • Bharatham, Kavitha (Division of Applied Life Science, Environmental Biotechnology National Core Research Center, Gyeongsang National University) ;
  • Lee, Keun-Woo (Division of Applied Life Science, Environmental Biotechnology National Core Research Center, Gyeongsang National University)
  • Published : 2006.02.20

Abstract

Three-dimensional quantitative structure-activity relationship (3D-QSAR) models were developed for 67 molecules of 2-amino-benzothiazole-6-anilide derivatives against lymphocyte-specific protein tyrosine kinase (P56 LCK). The molecular field analysis (MFA) and receptor surface analysis (RSA) were employed for QSAR studies and the predictive ability of the model was validated by 15 test set molecules. Structure-based investigations using molecular docking simulation were performed with the crystal structure of P56 LCK. Good correlation between predicted fitness scores versus observed activities was demonstrated. The results suggested that the nature of substitutions at the 2-amino and 6-anilide positions were crucial in enhancing the activity, thereby providing new guidelines for the design of novel P56 LCK inhibitors.

Keywords

References

  1. Isakov, N.; Biesinger, B. Eur. J. Biochem. 2000, 267, 3413 https://doi.org/10.1046/j.1432-1327.2000.01412.x
  2. Levitzki, A. Pharmacol. Ther. 1999, 82, 231 https://doi.org/10.1016/S0163-7258(98)00066-7
  3. Aaronson, S. A. Science 1991, 254, 1146 https://doi.org/10.1126/science.1659742
  4. Neet, K.; Hunter, T. Genes Cells 1996, 1, 147 https://doi.org/10.1046/j.1365-2443.1996.d01-234.x
  5. Robinson, D. R.; Wu, Y. M.; Lin, S. F. Oncogene 2000, 19, 5548 https://doi.org/10.1038/sj.onc.1203957
  6. Gu, J.; Gu, X. Gene 2003, 317, 49 https://doi.org/10.1016/S0378-1119(03)00696-6
  7. Marth, J. D.; Peet, R.; Krebs, E. G.; Perlmutter, R. M. Cell 1985, 43, 393 https://doi.org/10.1016/0092-8674(85)90169-2
  8. Voronova, A. F.; Sefton, B. M. Nature 1986, 319, 682 https://doi.org/10.1038/319682a0
  9. Veillette, A.; Abraham, N.; Caron, L.; Davidson, D. Semin. Immunol. 1991, 3, 143
  10. Biondi, A.; Paganin, C.; Rossi, V.; Benvestito, S.; Perlmutter, R. M.; Mantovani, A.; Allavena, P. Eur. J. Immunol. 1991, 21, 843 https://doi.org/10.1002/eji.1830210348
  11. Bolen, J. B.; Brugge, J. S. Annu. Rev. Immunol. 1997, 15, 371 https://doi.org/10.1146/annurev.immunol.15.1.371
  12. Trevillyan, J. M.; Chiou, X. G.; Ballaron, S. J.; Tang, Q. M.; Buko, A.; Sheets, M. P.; Smith, M. L.; Putman, C. B.; Wiedeman, P.; Tu, N.; Madar, D.; Smith, H. T.; Gubbins, E. J.; Warrior, U. P.; Chen, Y. W.; Mollison, K. W.; Faltynek, C. R.; Djuric, S. W. Arch. Biochem. Biophys. 1999, 364, 19 https://doi.org/10.1006/abbi.1999.1099
  13. Palacios, E. H.; Weiss, A. Oncogene 2004, 23, 7990 https://doi.org/10.1038/sj.onc.1208074
  14. Vang, T.; Abrahamsen, H.; Myklebust, S.; Enserink, J.; Prydz, H.; Mustelin, T.; Amarzguioui, M.; Tasken, K. Eur. J. Immunol. 2004, 34, 2191 https://doi.org/10.1002/eji.200425036
  15. Liu, P.; Aitken, K.; Kong, Y. Y.; Opavsky, M. A.; Martino, T.; Dawood, F.; Wen, W. H.; Kozieradzki, I.; Bachmaier, K.; Straus, D.; Mak, T. W.; Penninger, J. M. Nat. Med. 2000, 6, 429 https://doi.org/10.1038/74689
  16. Llinas-Brunet, M.; Beaulieu, P. L.; Cameron, D. R.; Ferland, J. M.; Gauthier, J.; Ghiro, E.; Gillard, J.; Gorys, V.; Poirier, M.; Rancourt, J.; Wernic, D.; Betageri, R.; Cardozo, M.; Jakes, S.; Lukas, S.; Patel, U.; Proudfoot, J.; Moss, N. J. Med. Chem. 1999, 42, 722 https://doi.org/10.1021/jm980612i
  17. Hanke, J. H.; Pollok, B. A.; Changelian, P. S. Inflamm. Res. 1995, 44, 357 https://doi.org/10.1007/BF01797862
  18. Goldberg, D. R.; Butz, T.; Cardozo, M. G.; Eckner, R. J.; Hammach, A.; Huang, J.; Jakes, S.; Kapadia, S.; Kashem, M.; Lukas, S.; Morwick, T. M.; Panzenbeck, M.; Patel, U.; Pav, S.; Peet, G. W.; Peterson, J. D.; Prokopowicz, A. S.; Snow, R. J.; Sellati, R.; Takahashi, H.; Tan, J.; Tschantz, M. A.; Wang, X. J.; Wang, Y.; Wolak, J.; Xiong, P.; Moss, N. J. Med. Chem. 2003, 46, 1337 https://doi.org/10.1021/jm020446l
  19. Das, J.; Lin, J.; Moquin, R. V.; Shen, Z.; Spergel, S. H.; Wityak, J.; Doweyko, A. M.; DeFex, H. F.; Fang, Q.; Pang, S.; Pitt, S.; Shen, D. R.; Schieven, G. L.; Barrish, J. C. Bioorg. Med. Chem. Lett. 2003, 13, 2145 https://doi.org/10.1016/S0960-894X(03)00380-9
  20. Das, J.; Moquin, R. V.; Lin, J.; Liu, C.; Doweyko, A. M.; DeFex, H. F.; Fang, Q.; Pang, S.; Pitt, S.; Shen, D. R.; Schieven, G. L.; Barrish, J. C.; Wityak, J. Bioorg. Med. Chem. Lett. 2003, 13, 2587 https://doi.org/10.1016/S0960-894X(03)00511-0
  21. Lee, K. W.; Kwon, S. Y.; Hwang, S.; Lee, J.-U.; Kim, H. Bull. Korean Chem. Soc. 1996, 17, 147
  22. Molecular Simulations: Scranton Raod, San Diego, CA 92121- 3752, USA. (http://www.accelrys.com)
  23. Hyun, K. H.; Kwack, I. Y.; Lee, D. Y.; Park, H. Y.; Lee, B.-S.; Kim, C. K. Bull. Korean Chem. Soc. 2004, 25, 1801 https://doi.org/10.5012/bkcs.2004.25.12.1801
  24. Jones, G.; Willett, P.; Glen, R. C.; Leach, A. R.; Taylor, R. J. Mol. Biol. 1997, 267, 727 https://doi.org/10.1006/jmbi.1996.0897
  25. Zhu, X.; Kim, J. L.; Newcomb, J. R.; Rose, P. E.; Stover, D. R.; Toledo, L. M.; Zhao, H.; Morgenstern, K. A. Structure Fold Des. 1999, 7, 651 https://doi.org/10.1016/S0969-2126(99)80086-0

Cited by

  1. Nitriles in Organic Synthesis: Synthesis of Some New 2-Heterocyclic Benzothiazole Derivatives vol.182, pp.8, 2007, https://doi.org/10.1080/10426500701323432
  2. Pharmacophore modeling for protein tyrosine phosphatase 1B inhibitors vol.30, pp.5, 2007, https://doi.org/10.1007/BF02977644
  3. Monte Carlo Docking Study for the Role of Glycosidic Residues in Determining the Human 2G12 Antibody-Binding Specificity with Series of Manno-Disaccharides vol.28, pp.10, 2007, https://doi.org/10.5012/bkcs.2007.28.10.1811
  4. P56 LCK Inhibitor Identification by Pharmacophore Modelling and Molecular Docking vol.28, pp.2, 2006, https://doi.org/10.5012/bkcs.2007.28.2.200
  5. Homology Modeling and Docking Study of β-Ketoacyl Acyl Carrier Protein Synthase Ⅲ from Enterococcus Faecalis vol.28, pp.8, 2007, https://doi.org/10.5012/bkcs.2007.28.8.1335
  6. Molecular Docking Study of Aminoacyl-tRNA Synthetases with Ligand Molecules from Four Different Scaffolds vol.31, pp.3, 2010, https://doi.org/10.5012/bkcs.2010.31.03.606