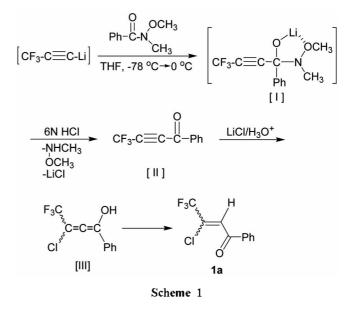
Communications

Efficient and General One-pot Synthesis of β-Chloro-β-trifluoromethylated Enones from 3,3,3-Trifluoropropyne

Sung Lan Jeon, Dae Ho Kim, Jang Bae Son, and In Howa Jeong


Department of Chemistry, Yonsei University, Wonju, Gangwon 220-710, Korea. *E-mail: jeongih@yonsei.ac.kr Received September 20, 2006

Key Words : 3,3,3-Trifluoropropyne. Weinreb amide. Hydrochlorination. β -Chloro- β -trifluoromethylated enones

Trifluoromethylated compounds which can be easily transformed to other functionality have been receiving much attention as building blocks because of their potential to give a variety of trifluoromethylated analogs of bioactive and material molecules.¹⁻³ Especially, β -chloro- β -trifluoromethvlated enones are very useful building blocks to provide trifluoromethyl substituted heterocycles such as pyrazoles. isoxazoles and pyrimidines.⁴⁻⁷ Several methods for the preparation of β -chloro- β -trifluoromethylated enones have been reported in the previous literatures, ^{6,8-9} but the previous methods have some drawbacks such as formation of regioisomers, lack of generalization and low yield preparation. Eguchi et al. reported that addition of 1.1,1-trichloro-2.2,2trifluoroethane to carbon-carbon double bond of trimethylsilvl enol ethers in the presence of copper(I) chloride, followed by dehydrochlorination with triethylamine, afforded β -chloro- β -trifluoromethylated enones in moderate vields.8 Vilsmeier reagent which was formed from the reaction of dimethylformamide with oxalyl chloride was reacted with trifluoromethylated 1.3-diketone⁶ or ketone⁹ to provide β -chloro- β -trifluoromethylated enones in moderate yield, along with other regioisomer. In this communication, we wish to describe an efficient and general one-pot synthesis of β -chloro- β -trifluoromethylated enones from 3.3.3trifluoropropyne.

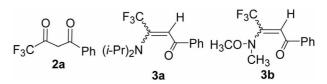
Recently, we reported that trifluoropropynyllithium was reacted with *N*-methoxy-*N*-methylbenzamide (Weinreb benzamide)¹⁰ at -78 °C. followed by warming to 0 °C and quenching with water to give *E* and *Z* isomeric mixture of β -trifluoromethyl enaminone in good yield.¹¹ If the same reaction intermediate [1] would be treated with aqueous HCl. *N*-methoxy-*N*-methylamine formed in the reaction will be neutralized with HCl and thus chloride ion existed in the reaction mixture will react with β -trifluoromethylated ynone [II] to provide β -chloro- β -trifluoromethylated enones 1 *via* allenol [III] (Scheme 1). When trifluoropropynyllithium was reacted with Weinreb benzamide under the same reaction condition and then quenching with 3 N HCl, however, trifluoromethylated 1.3-diketone **2a** was obtained as an only product. The formation of **2a** can be postulated to be due to

the reaction of ynone [II] with H2O first instead of chloride ion under dilute acidic condition. This result indicates that concentration of 3 N HCl may not be enough to give 1a and thus we decided to increase the concentration of HCl. Treatment of intermediate [I] with 6 N HCl resulted in the formation of 1a in 95% yield as E and Z isomeric mixture (E/Z = 54/46). A longer reaction time with higher concentration than 6 N HCl afforded the same result. Assignment of E and Z isomers of 1a was made by the comparison of chemical shift of authentic sample in ¹⁹F and ¹H NMR spectroscopy.8 Weinreb benzamides having substituent such as methyl, methoxy, fluoro, chloro, bromo and trifluoromethyl group on para position of benzene ring also provided the corresponding enones 1b-1g in 92-94% yields under the same reaction condition. However, the use of 10 N HCl was required to give the corresponding enones 1h-1n in the case of Weinreb benzamides having substituent on ortho or meta position of benzene ring, Weinreb naphthalenamide and Weinreb furanamide. Weinreb cyclohexanamide also afforded the corresponding enone 10 in 81% yield. Results of these reactions are summarized in Table 1.

1962 Bull. Korean Chem. Soc. 2006, Vol. 27, No. 12

n-BuLi/THF

-0.11


Table 1.	Preparation of	β -chloro-	<i>β</i> -trifluorometh	ylated enones 1	l
----------	----------------	------------------	-------------------------	-----------------	---

CF ₃ -C≡C·	-H78 °C	→ [CF ₃ -C≡	C-Li]			
0 R-C-N	,осн₃ `сн₃ <u>6</u> №-	F ₃ C 10N HCI	H			
THF, -78 °C→0 °C CI R 1 O						
Compound No.	R	Yield (%) ^e	$E Z^b$			
1a	\sim	95	54/56			
1b	-∕⊂≻Me	92	54/46			
1 c	-{_}-OMe	94	50/50			
1d	-√_≻F	94	54/46			
1e	-∕_}-cı	92	55/45			
1f	-√_>Br	94	55/45			
1g	-⟨¯⟩-CF ₃	92	53/47			
1h	$\neg \bigcirc$	95	54/46			
1i		90	54/46			
1j	$-\bigcirc$	92	53/47			
1k		90	54/46			
11	Me	93	52/48			
1m	-8	88	54/46			
1n	-Q-	90	50/50			
10	-Õ	81	54/46			

"Isolated yield. ^bE/Z ratio was determined by ¹⁹F NMR spectroscopy.

Since trifluoropropynyllithium can also be generated from 2-bromo-3,3,3-trifluoropropene,12 we examined the hydrochlorination reaction of [I]. Therefore, the reaction of 2bromo-3.3.3-trifluoropropene (1 equiv) with LDA (2 equiv) at -78 °C afforded trifluoropropynyllithium which was reacted with Weinreb benzamide to give intermediate [I]. However, the treatment of intermediate [I] with 6 N HCl resulted in the formation of 2a in 80% yield. Previous literature¹¹ showed that treatment of [I] with H₂O in the presence of diisopropvlamine resulted in the formation of enaminone 3a exclusively. Enaminone 3a was easily hydrolyzed to give 2a at room temperature under 6 N HCl condition, whereas enaminone 3b was hydrolyzed to give 2a at 60 °C for 5 h under 6 N HCl condition. Therefore, a plausible mechanism for the formation of 2a in this reaction may involve the addition reaction of diisopropylamine formed in the reaction process towards ynone [II] to give enaminone 3a which was easily hydrolyzed under acidic condition.

Communications to the Editor

A typical reaction procedure for the preparation of 1c is as follows. A 25 mL two-neck round bottom flask equipped with a magnetic stirrer bar, a septum and an argon tee connected to an argon source was charged with 3,3.3trifluoropropyne (0.564 g. 6.0 mmol) and THF at -78 °C and then n-BuLi (6.0 mmol) was added. After the reaction mixture was stirring at -78 °C for 30 min, 4.N-dimethoxy-Nmethylbenzamide (0.585 g. 3 mmol) was added into the mixture at -78 °C and then slowly warmed to 0 °C, followed by quenching with 6 N HCl. The reaction mixture was extracted with diethyl ether twice. The diethyl ether solution was dried over anhydrous MgSO4 and chromatographed on SiO₂ column. Elution with a mixture of hexane and ethyl acetate (10 : 1) provided 0.744 g of 1c in 94% yield. (Z)-1c: oil: ¹H NMR (CDCl₃) δ 7.91 (d, J = 8.7 Hz, 2H), 7.40 (s, 1H). 6.99 (d, J = 8.7 Hz. 2H). 3.90 (s, 3H); (E)-1c: δ 7.89 (d, J = 8.7 Hz, 2H), 7.00 (s. 1H), 6.99 (d. J = 8.7 Hz, 2H), 3.90 (s. 3H): ¹⁹F NMR (CDCl₃, internal standard CFCl₃) δ-65.67 (s. 3F, E-isomer). -70.40 (s, 3F, Z-isomer): MS. m/z (relative intensity) 266 (MF+2, 23), 264 (M⁺, 70), 238 (18), 236 (54), 135 (100), 107 (12), 92 (14), 77 (16); IR (neat) 3046. 3020, 2968. 2940. 2845. 1675. 1598. 1575. 1510, 1462, 1445, 1260, 1180, 1150, 834 cm⁻¹. Anal. Calcd for C₁₀H₆ClF₃O: C, 50.00; H. 3.05. Found: C. 49.93; H, 2.99.

Acknowledgements. This work was supported by Maeji Institute of Academic Research (2004-2005). Yonsei University.

References

- Liebman, J. F.; Greenberg, A.; Dolbier, W. R. Jr. Fluorine-Containing Molecules, VCH: New York, 1988.
- Banks, R. E.; Smart, B. E.; Tatlow, J. C. Organofluorine Chemistry-Principle and Commercial Applications: Plenum: New York, 1994.
- Ojima, I.; McCarthy, J. R.; Welch, J. T. Biomedical Frontiers of Fluorine Chemistry, ACS: Washington, DC, 1996.
- Alvernhe, G.: Langlois, B.: Laurent, A.; Le Drean, I.: Selmi, A. Tetrahedron Lett. 1991, 32, 643-646.
- Alvemhe, G.; Greif, D.; Langlois, B.; Laurent, A.; Le Drean, I.; Pulst, M.; Selmi, A.; Weissenfels, M. Bull. Soc. Chim. Fr. 1994, 131, 167-171.
- Arnaud, R.; Bensadat, A.: Ghobsi, A.: Laurent, A.: Le Drean, I.; Lesniak, S.: Selmi, A. Bull. Soc. Chim. Fr. 1994, 131, 844-853.
- Diab, J.; Laurent, A.: Le Drean, I. J. Fluorine Chem. 1997, 84, 145-147.
- Okano, I.; Uekawa, T.; Eguchi, S. Bull. Chem. Soc. Jpn. 1989, 62, 2575-2579.
- Selmi, A.; Gaied, M. M. El; Alvernhe, G. J. Fluorine Chem. 1995, 72, 1-7.
- 10. Nahm, S.; Weinreb, S. M. Tetrahedron Lett. 1981, 22, 3815-3818.
- Jeong, I. H.; Jeon, S. L.; Min, Y. K.; Kim, B. T. *Tetrahedron Lett.* 2002, 43, 7171-7174.
- Yamazaki, T.: Mizutani, K.; Kitazume, T. J. Org. Chem. 1995, 60, 6046-6056.