DOI QR코드

DOI QR Code

Synthesis of Lysophosphatidylcholine Analogues Using D-Mannitol as a Chiral Template and Their Biological Activity for Sepsis

  • Heo, Hye Jin (Department of Chemistry, Institute of Natural Medicine, Infectious Disease Medical Research Center, Hallym University) ;
  • Jung, Jun-Sub (Department of Pharmacology, Institute of Natural Medicine, Infectious Disease Medical Research Center, Hallym University) ;
  • Lee, Jung Ho (Department of Chemistry, Institute of Natural Medicine, Infectious Disease Medical Research Center, Hallym University) ;
  • Han, Su Young (Department of Chemistry, Institute of Natural Medicine, Infectious Disease Medical Research Center, Hallym University) ;
  • Bang, Hyun Bae (Department of Chemistry, Institute of Natural Medicine, Infectious Disease Medical Research Center, Hallym University) ;
  • Song, Dong-Keun (Department of Pharmacology, Institute of Natural Medicine, Infectious Disease Medical Research Center, Hallym University) ;
  • Jun, Jong-Gab (Department of Chemistry, Institute of Natural Medicine, Infectious Disease Medical Research Center, Hallym University)
  • Published : 2006.08.20

Abstract

LPC analogues including natural and unnatural LPC, 3-L-2-PC, acetylated LPC and ethylene glycol derivative are prepared from D-mannitol using in convenient procedures by only changing the synthetic sequences, and their protective activities against cecal ligation and puncture (CLP)-induced severe sepsis are compared. The chirality at C2 position in LPC is found to be required as (S)-configuration for sepsis inhibition, comparing from the protection activity between LPC 6 and unnatural LPC 8. The hydroxyl functionality is also very important and required at C2 or C3 position as shown in the protection activities of ethylene glycol analogue 11 and 3-L-2-PC 9.

Keywords

References

  1. Hoyert, D. L.; Kochanek, K. D.; Murphy, S. L. Natl. Vital Stat. Rep. 1999, 47, 1-104
  2. Hotchkiss, R. S.; Karl, I. E. N. Engl. J. Med. 2003, 348, 138-150 https://doi.org/10.1056/NEJMra021333
  3. Yan, J.-J.; Jung, J.-S.; Lee, J.-E.; Lee, J.; Huh, S.-O.; Kim, H.-S.; Jung, K. C.; Cho, J.-Y.; Nam, J.-S.; Suh, H.-W.; Kim, Y.-H.; Song, D.-K. Nat. Med. 2004, 10, 161-167 https://doi.org/10.1038/nm989
  4. Drobnik, W. et al. J. Lipid Res. 2003, 44, 754-761 https://doi.org/10.1194/jlr.M200401-JLR200
  5. Kim, Y.-A.; Park, M.-S.; Kim, Y. H.; Han, S.-Y. Tetrahedron 2003, 59, 2921-2928 https://doi.org/10.1016/S0040-4020(03)00282-5
  6. Baldwin, J. J.; Raab, A. W.; Mensler, K.; Arison, B. H.; McClure, D. E. J. Org. Chem. 1978, 43, 4876-4878 https://doi.org/10.1021/jo00419a036
  7. Maeng, Y. H.; Jun, J.-G. Bull. Korean Chem. Soc. 2004, 25, 143-146 https://doi.org/10.5012/bkcs.2004.25.1.143
  8. Deroo, P. W.; Rosenthal, A. F.; Isaacson, Y. A.; Vargas, L. A.; Bittman, R. Chem. Phys. Lipids 1976, 16, 60-70 https://doi.org/10.1016/0009-3084(76)90014-1
  9. Burgos, C. E.; Ayer, D. E.; Johnson, R. A. J. Org. Chem. 1987, 52, 4973-4977 https://doi.org/10.1021/jo00231a025
  10. Byun, H.-S.; Sadlofsky, J. A.; Bittman, R. J. Org. Chem. 1998, 63, 2560-2563 https://doi.org/10.1021/jo971977y