A Concise Synthesis of 8-Oxoberberine and Oxychelerythrine, Natural Isoquinoline Alkaloids through Biomimetic Synthetic Way

Thanh Nguyen Le and Won-Jea Cho*
College of Pharmacy and Research Institute of Drug Development, Chomam National Lnwersity, Gwangiu 500-757, Korea
E-mail: wjchoamu.ackr
Recenved August 9, 2006

Key Words : Benzo[c]phenanthridine alkaloid. Protoberberine alkaloid. Oxychelerythrine. 8-Oxoberberine. Biomimetic pathway

Natural isoquinoline alkaloids such as berberine and chelerythrine exhibit a variety of biological activities. ${ }^{1,2}$ Berberine has been isolated from several medicinal herbs. such as Hydrastis conodensis, Cortex phellodendri and Rhizoma coptidis which are widely distributed in plants and used as the traditional oriental medicine. Recently it has been attracted by the unique biological activities such as antidiabetic, ${ }^{3}$ anticancer ${ }^{4,5}$ and antimicrobial activities. ${ }^{6,7}$ One of the most interesting properties of berberine is that it exhibits cholesterol-lowering effect. ${ }^{8.5}$ Oral administration of berberine in 32 hypercholesterolemic patients for 3 months reduced serum cholesterol by 29%. triglycerides by 35% and LDL-cholesterol by $25 \%{ }^{9}$ Energing of this compound as new cholesterol-lowering drug prompted us to develop new efficient synthesis of berberine.
Chelerythrine. a benzo c |phenanthridine alkaloid, also has been investigated for its biological efficacy such as anti-
tumor, ${ }^{(1)}$ inlubition of protein kinase C. ${ }^{11}$ induction of apoptosis through the generation of reactive oxygen and the stimulation of GSH transport. ${ }^{12}$

Due to the interesting biological activities. the synthesis of protoberberine and benzo|c phenantluridines has been studied. ${ }^{1,13.14}$ Recently. we have also reported a versatile synthetic pathways for these alkaloids using lithiated toluamidebezonitrile cycloaddition. ${ }^{\text {ls. }}$ Is

As depicted in Scheme 1, benzo[c]phenanthridine alkaloid, chelerythrine. was proposed to be biosynthesized from the corresponding protoberberine alkaloid. ${ }^{17}$ In this pathway. the 3-arylisoquinolinone is a key intermediate for the cyclization step toward the benzo [c|phenanthridine skeleton.

We have reported the synthesis and QSAR studies of 3arylisoquinoline derivatives with antitumor activity. ${ }^{17.20}$ The synthetic strategy involved in the coupling reaction of N -methyl-o-toluamide with benzonitrile derivatives. ${ }^{21}$

Scheme 1. Biosynthetic pathway of benzo[c]phenanthridine alkaloid from protoberberine.

Scheme 2. Retrosynthesis of 8-oxoberberine 4 and oxychelery thrine $\mathbf{5}$.

Scheme 3. Synthesis of 8-oxoberberine 4 .

Scheme 4. Synthesis of oxycheleryturine 5.

Retrosynthetic analysis of both alkaloids suggested that the coupling reaction of o-toluamide 1 with benzonitrile 2 affords 3 -arylisoquinoline 3 . which could be converted to 8 oxoberberine 4 via $\mathrm{S}_{2} 2$ type cyclization of amide nitrogen. On the other hand. cyclization at C 4 position could give oxychelerythrine 5 as shown in Scheme 2.
\dot{N}-Methyl-o-toluamide 1^{22} was lithiated with n-butyl lithium to give the dianion. which was treated with benzonitrile 2^{15} at $-50^{\circ} \mathrm{C}$ in THF to afford the 3 -arylisoquinoline- $\mathrm{I}(2 \mathrm{H})$-one 6. Deprotection of MOM (methoxymethyl) with $10 \% \mathrm{HCl}$ gave the alcohol 7 , which were then reacted with $p-\mathrm{TsCl}$ in DMF in the presence of triethylamine to afford the desired protoberberine alkaloid. oxyberberine 4 in 63% yield (Scheme 3)
The 3-arylisoquinoline intermediate 6 was treated with $\mathrm{MeI} / \mathrm{K}_{2} \mathrm{CO}_{3}$ provided the N -methylated product 8 without yielding ($)$-methylated compounds in 61% yield. Hydrolysis of MOM group with $10 \% \mathrm{HCl}$ gave the alcohols 9 which was then oxidized with $\mathrm{PCC} / \mathrm{NaOAc}$ to provide the desired benzo [c]phenanthridine alkaloid, oxychelerythrine 5 in 65% yield (Scheme 4).

In conclusion. we accomplished a biomimetic synthesis of 8 -oxoberberine 4 and oxychelerythrine 5 in three and four
steps. respectively. Efficiency and short synthetic step made this process possible to be used as a general method for multi gram scale preparation of these alkaloids.

Experimental Section

Melting points were detemined by using the capillary method on Electrothennal IAS200 digital melting point apparatus and were uncorrected. Nuclear magnetic resonance (NMR) data for ${ }^{1} \mathrm{H}$ NMR was taken on Varian Unity 300 plus spectrometer and were reported in ppm, downfield from the peak of tetramethylsilane as an intenal standard. The data are reported as follows: chemical shift. number of proton. multiplicity (s: singlet. d: doublet. t: triplet. q: quartet. m : multiplet). IR spectra were recorded on JASCO-FT IR spectrometer using CHCl_{3} and KBr pellets. Mass spectra were obtained on JEOL JNS-DX 303 applying the electronimpact (EI) method. Column chromatography was performed on Merck silica gel 60 ($70-230$ mesh). TLC was carried out using plates coated with silica gel 60 F 254 purchased from Merck. Chemical reagents were purchased from Aldrich Chemical Co. and used without further purification. Solvents were distilled prior to use: THF. ether were distilled from
sodium/benzophenone.
7,8-Dimethoxy-3-[6-(2-methoxymethoxyethyl)benzo[1,3]-dioxol-5-yl]-2H-isoquinolin-1-one (6). To the solution of amide $1(1.44 \mathrm{~g} .6 .8 \mathrm{mmol})$ in dry THF (20 mL) was added n-butyl lithium (5.6 mL of 2.5 M in hexane. 14 mmol) at $-20^{\circ} \mathrm{C}$ and maintained the reaction temperature never exceeding $20^{\circ} \mathrm{C}$. After the red orange solution was stirred at $0^{\circ} \mathrm{C}$ for 1 h and cooled to $-50^{\circ} \mathrm{C}$, benzonitrile $2(1.35 \mathrm{~g}, 5.7$ mmol) was added dropwise. The reaction misture was stirred at the same temperature for 20 min and allowed to warm up to room temperature. The reaction was quenched with water and extracted with ethyl acetate. The organic layer was washed with water brine and dried over sodium sulfate. After removing the solvent in vacuo, the residue was purified by column chromatography with n-hexane-ethyl acetate ($1: 1$) to afford 3-arylisoquinoline 6 as a sticky solid ($1.05 \mathrm{~g} .44 \%$). IR $\left(\mathrm{cm}^{-1}\right): 3400(\mathrm{NH}) .1630(\mathrm{C}=\mathrm{O}) .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta .10 .30(\mathrm{~s} .1 \mathrm{H}) .7 .34(\mathrm{~d} . J=8.7 \mathrm{~Hz} .1 \mathrm{H})$. $7.25(\mathrm{~d} . J=8.7 \mathrm{~Hz}, 1 \mathrm{H}) .6 .85(\mathrm{~s} .1 \mathrm{H}) .6 .80(\mathrm{~s} .1 \mathrm{H}) .6 .32$ (s. $1 \mathrm{H}) .6 .01(\mathrm{~s} .2 \mathrm{H}) .4 .74(\mathrm{~s} .2 \mathrm{H}) .4 .00(\mathrm{~s} .3 \mathrm{H}) .3 .95(\mathrm{~s} .3 \mathrm{H})$. 3.84 (m. 2H). 3.25 (s. 3H). 2.85 (m. 2H). MS. me (\%): 413 ($\mathrm{M}^{+} .10$). 336 (14). 222 (59), 192 (94), 174 (100).
3-[6-(2-Hydroxyethyl)benzo $[1,3]$ dioxol-5-yl]-7,8-dimeth-oxy- 2 H -isoquinolin-1-one (7). To a solution of compound 6 (450 mg .1 .09 mmol) in THF (15 mL) was added $10 \% \mathrm{HCl}$ (5 mL) and then the reaction mixture was refluxed for 2 h . It was poured into water and extracted with ethyl acetate. The ethyl acetate extract was washed with water. brine and dried over anhydrous sodium sulfate. After removing the solvent, the residue was purified by column chromatography on silica gel with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$: $\mathrm{MeOH}(20: 1)$ to give an alcohol 7 as a yellow solid ($290 \mathrm{mg} .72 \%$). mp: 218-220 ${ }^{\circ} \mathrm{C}$. IR $\left(\mathrm{cm}^{-1}\right)$: $3400(\mathrm{NH} . \mathrm{OH}) .1642(\mathrm{C}=\mathrm{O}) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta .11 .0(\mathrm{~s} . \mathrm{IH}) .7 .44(\mathrm{~d}, J=8.7 \mathrm{~Hz}, \mathrm{IH}) .7 .31(\mathrm{~d}, J=8.7 \mathrm{~Hz}$. $1 \mathrm{H}), 6.90(\mathrm{~s}, 1 \mathrm{H}), 6.82(\mathrm{~s}, ~ 1 \mathrm{H}), 6.28(\mathrm{~s}, 1 \mathrm{H}), 6.00(\mathrm{~s}, 2 \mathrm{H})$. $5.05(\mathrm{~s} .1 \mathrm{H}) .3 .79(\mathrm{~s} .3 \mathrm{H}) .3 .69(\mathrm{~s} .3 \mathrm{H}) .3 .55(\mathrm{~m} .2 \mathrm{H}) .2 .61(\mathrm{t}$. $J=6.5 \mathrm{~Hz} .2 \mathrm{H})$. MS. me (\%): 369 (M- 34). 322 (57). 22 I (60), 174 (100).

9,10-Dimethoxy-5,6-dihydro[1,3]dioxolo[4,5-g]isoquino-[3,2-a] isoquinolin-8-one (8-oxoberberine) (4). The mixture of compound 7 (100 mg .0 .28 mmol). tosyl chloride (115 mg .0 .6 mmol). and triethy lamine (60 mg .0 .6 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was stirred at room temperature for ovemight. The reaction mixture was poured into water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The extract was dried over anhydrous sodium sulfate. After evaporating off the solvent, the residue was purified by column chromatography with n-hexane-ethyl acetate (1:1) to give 8-oxoberberine 4 as a yellow solid (61 mg. 63%) mp : $191-193{ }^{\circ} \mathrm{C}$ (lit. ${ }^{15} 191-193{ }^{\circ} \mathrm{C}$). IR $\left(\mathrm{cm}^{-1}\right)$: $1642(\mathrm{C}=\mathrm{O}) .{ }^{\mathrm{H}} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 7.32(\mathrm{~d} . J=8.7$ $\mathrm{Hz}, 1 \mathrm{H}) .7 .27(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{~s}, 1 \mathrm{H}), 6.72(\mathrm{~s}, 1 \mathrm{H})$. $6.70(\mathrm{~s} .1 \mathrm{H}) .6 .01$ (s. 2 H). 4.29 (t. $J=6.2 \mathrm{~Hz} .2 \mathrm{H}) .4 .01$ (s. $3 \mathrm{H}) .3 .95$ (s. 3 H). 2.89 (t. $J=6.2 \mathrm{~Hz}, 2 \mathrm{H}$). MS. me (\%): 351 $\left(\mathrm{M}^{+} .100\right), 336(53), 322(44), 308(4 \mathrm{~L})$.
7,8-Dimethoxy-3-[6-(2-methoxymethoxyethyl)benzo[1,3]-dioxol-5-yl|-2-methyl-2H-isoquinolin-1-one (8). The mixture of compound $6(310 \mathrm{mg}, 0.75 \mathrm{mmol}) . \mathrm{K}_{3} \mathrm{CO}_{3}(517 \mathrm{mg}$.
3.75 mmol) and methyl iodide (210 mg .1 .5 mmol) in DMF $(6 \mathrm{~mL})$ was heated at $100^{\circ} \mathrm{C}$ for 3 h . The reaction mixture was quenched by water and then extracted with ethyl acetate. The combined ethyl acetate extracts were washed with water, brine and dried over anhydrous sodium sulfate. After removing the solvent. the residue was purified by colunn chromatography on silica gel with n-hexane-ethyl acetate ($1: 1$) to give the compound 8 as an oil (196 mg . 61%). IR $\left(\mathrm{cm}^{-1}\right): 1645(\mathrm{C}=\mathrm{O}) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz} . \mathrm{CDCl}_{3}$) $\delta .7 .32(\mathrm{~d}, J=8.7 \mathrm{~Hz} .1 \mathrm{H}) .7 .20(\mathrm{~d}, J=8.7 \mathrm{~Hz} .1 \mathrm{H}), 6.89(\mathrm{~s}$, $1 \mathrm{H}) .6 .69(\mathrm{~s} .1 \mathrm{H}) .6 .27(\mathrm{~s} .1 \mathrm{H}) .6 .02(\mathrm{~m} .2 \mathrm{H}) .4 .50(\mathrm{~s} .2 \mathrm{H})$. 4.02 (s. 3 H). 3.95 (s. 3 H). 3.61 (m. 2 H). 3.25 (s. 3 H). 3.20 (s. 3H). 2.85 (m. 2 H). MS. me (\%): 427 (M ${ }^{+} .100$). 358 (14), 221 (59), 198 (92), 172 (80).

3-[6-(2-Hydroxyethyl)benzo[1,3]dioxol-5-yl]-7,8-dimeth-oxy-2-methyl- 2 H -isoquinolin-1-one (9). To the mixture of compound 8 (162 mg .0 .38 mmol) in THF (15 mL) was added $10 \% \mathrm{HCl}(5 \mathrm{~mL})$ and then the reaction mixture was refluxed for 2 h . It was poured into water and extracted with ethyl acetate. The ethyl acetate extracts were washed with water. brine and dried over anhydrous sodium sulfate. After removing the solvent. the residue was purified by column chromatography on silica gel with with n-hexane-ethyl acetate ($1: 1$) to give the alcohol 9 as a solid ($110 \mathrm{mg} .76 \%$). mp: $163-165^{\circ} \mathrm{C} . \mathrm{IR}\left(\mathrm{cm}^{-1}\right): 3450(\mathrm{OH}) .1650(\mathrm{C}=\mathrm{O}) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz} . \mathrm{CDCl}_{3}$) $\delta .7 .32$ (d. $\left.J=8.7 \mathrm{~Hz} .1 \mathrm{H}\right) .7 .20$ (d. $J=8.7 \mathrm{~Hz} .1 \mathrm{H}$). $6.93(\mathrm{~s} .1 \mathrm{H}) .6 .70(\mathrm{~s} .1 \mathrm{H}) .6 .28(\mathrm{~s} .1 \mathrm{H})$, $6.01(\mathrm{~m} .2 \mathrm{H}) .4 .01$ (s. 3H). 3.95 (s. 3H). 3.72 (m. 2 H). 3.24 (s. 3H), 2.79-2.53 (m. 2 H). MS. me (\%): $383\left(\mathrm{M}^{+}, 100\right)$. 368 (49). 354 (19). 206 (18).

1,2-Dimethoxy-12-methyl-12H-[1,3]dioxolo[$\left.4^{\prime}, 5^{\prime}: 4,5\right]$ benzo [1,2-c|phenanthridin-13-one (5) (oxychelerythrine). The reaction mixture of alcohol $9(70 \mathrm{mg}, 0.18 \mathrm{mmol}), ~ \mathrm{PCC}$ (80 mg .0 .37 mmol) and $\mathrm{NaOAc}(25 \mathrm{mg} .0 .3 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8 \mathrm{~mL})$ was stirred for 5 h . The reaction misture was filtered and the filtrate was washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined solvents were evaporated off and the residue was purfied by column chromatography on silica gel with n -hexane-ethyl acetate ($1: 1$) to afford the oxychelerythrine 5 as a white solid ($42 \mathrm{mg} .65 \%$). mp 198-199 ${ }^{\circ} \mathrm{C}$. (litit ${ }^{23} 197-$ $\left.198^{\circ} \mathrm{C}\right) . \operatorname{IR}(\mathrm{KBr})\left(\mathrm{cm}^{-1}\right): 1645(\mathrm{C}=\mathrm{O}) .{ }^{1} \mathrm{H} \operatorname{NMR}(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta .8 .00(\mathrm{~d} . J=9.0 \mathrm{~Hz} . \mathrm{lH}) .7 .98(\mathrm{~d} . J=9.0 \mathrm{~Hz}, \mathrm{lH})$ $7.58(\mathrm{~d} . J=9.0 \mathrm{~Hz} .1 \mathrm{H}), 7.38(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{~s}$. $1 \mathrm{H}) .7 .16(\mathrm{~s} .1 \mathrm{H}) .6 .10(\mathrm{~s} .2 \mathrm{H}) .4 .08$ (s. 3H). 3.98 (s. 3H). 3.90 (s. 3H). MS. me (\%): 363 (M. 35). 348 (15). 334 (14). 305 (18), 190 (20). 57 (100). Anal. Calc. for $\mathrm{C}_{21} \mathrm{H}_{17} \mathrm{NO}_{5}$: C, 69.41: H. 4.72: N, 3.85. Found: C, 69.63; H. 4.69: N, 3.87.

Acknowledgement. This work was supported by Korea Research Foundation Grant (KRF-2003-041-E00336).

References

1. Machay. S. P.: Meth-Cohn. O.: Waich. R. D. In Ademces in Heterocychic Chentistry: Academic Press: Orlando. 1997: Vol. 67.
2. Simanek. V. The Alkaloids: Academic Press: Orlando. 1985; Vol. 26.
3. Lee. Y. S.: Kim, W. S.: Kim, K. H.; Yoon. M. J. Cho, H. J.: Shen,
Y.: Ye. J. M.: Lee. C. H.: Oh. W. K.: Kim. C. T.: Hohnen-Behrens. C.: Gosby. A.: Kraegen. E. W.: James. D. E.: Kim. J. B. Diaberes 2006. 55.2256
4. Lin. C. C.: Kao. S. T.: Chen. G. W.: Chung. J. G. Anticoncer Res. 2005, $25,4149$.
5. Letasiova. S.: Jantova. S.: Cipak; L.; Muckova, M. Garcer Lett. $2006,239,254$.
6. Yu. H. H.: Kim. K. J.: Cha. J. D.: Kim. H. K.: Lee. Y. E.: Choi. N. Y.: You. Y. O. J. hed Food $2005,8.454$
7. Hwang. J. M.: Kuo. H. C.: Tseng. T. H.: Liu. J. Y:: Chu. C. Y. Arch Toxicol. 2006, 80. 62.
8. Cho, B. J.: Im, E. K.; Kwon, J. H.: Lee, K. H.; Shin. H. J.: Oh, J.: Kang, S. M.: Chung. J. H.: Jang. Y Mol. Cells 2005. 20. 429.
9. Kong. W.: Wei. J.: Abidi. P.: Lin. M.: Inaba S.: Li. C.: Wang. Y:: Wang. Z.: Si. S.: Pan. H.: Wang. S.: Wu. J.: Wang. Y.: Li. Z.: Liu. J. Jiang. J. D. Nat Med 2004. 10. 1344.
10. Kemeny-Beke, A.: Aradi, J.: Damjanovich, J.: Beek, Z.: Facsko, A.: Berta. A.: Bodnar A. Cancer Lett. 2006. 237. 67
11. Hoffinann. T. K.: Leenen. K.; Hatner D.: Balz, V.: Gerharz, C. D.: Grund. A.: Ballo. H.: Hauser. U.: Bier. H. Anticoncer Drugs 2002. 13.93.
12. Lou. H.: Ookhtens, M.; Stolz, A.; Kaplowitz. N. Am. J. Physiol Gastromest Liver Phusiol. 2003. 285. G1335.
13. Ishikawa. T.: Ishii. H. Heteroclcles 1999. 50.627.
14. Clement. B.: Weide. M.: Wolschendorf. U.: Kock. I. Angew Chem Im. Ed 2005. 41.635
15. Le. T. N.; Gang, S. G.: Cho. W. J. J. Org. Chem. 2004. 69. 2768.
16. Le. I. N.: Gang. S. G.: Cho. W. J. Tetrohedron Lett. $2004 .+5$. 2763
17. Takao. N.: Kamigauchi. M.: Okada. M. Helv Chm. Acta 1983. 66.473
18. Cho. W. J.; Kim. E. K.: Park, I. Y.: Jeong, E. Y.; Kim. T. S.; Le. T. N.; Kim. D. D.: Lee. E. S. Bioorg. Med Chem 2002. 10, 2953.
19. Cho. W. T.: Mint S. Y.: Le. T. N.: Kim. T. S. Bioorg Med. Chem. Leff 2003.13 .4451.
20. Cho. W. J.: Park. M. J.: Chung. B. H.: Lee. C. O. Bioorg. Ated. Chem Lett. 1998.8.41
21. Poindexter. G. S. J. Org. Chem. 1982, 47, 3787.
22. Le. T. N.' Cho. W. J. Chem. Phavm. Bull. 2005, 53, 118
23. Hanaoka. M.: Motonishi. T.: Mukai. C. J. Chem. Soc.. Perkim Trams 11986.2253.
