Synthesis of Medium Sized Rings from the Cycloadducts of 3,5-Dibromo-2-pyrone via a Radical Mediated Fragmentation Reaction

Jae-Hee Choi, In-Ji Shin, Eun-Sil Choi, and Cheon-Gyu Cho
Deparment of Chemistry, Hanyang University, Seoul 133-791, Korea. E-mail: cchoahanyang.ackr Received September 13, 2006

Key Words: Medium sized ring. Diels-Alder, 3.5-Dibromo-2-pyrone. Fragmentation

Medium sized macrocycles. natural or unatural are important synthetic targets because of a wide spectrum of their intriguing biological activity. ${ }^{.}$Various stythetic strategies have been developed most of which utilize ring closure of $\alpha_{\text {. }}$ o-bifunctional linear precursors. ${ }^{\text {. Despite many examples }}$ in the literature. the formation of medium sized rings is not a trivial task owing to the unfavourable entropic change associated with. Moreover. the requisite employment of high dilution conditions renders the preparative scale synthesis arduous. Also reported were various methods based on ring expansion including the Wharton/Grob fragmentation as alternatives. ${ }^{3.4}$
We have previously reported the synthesis of structurally' novel tricyclolactones $\mathbf{1}$ from the Diels-Alder cycloadditions of 3.5 -dibromo-2-pyrone ${ }^{5}$ with cyclic enol ethers. ${ }^{6}$ Envisioning the potency of mesylates 2 , readily accessible from 1 . for the ensuing the Wharton/Grob type fragmentation ${ }^{4}$ we decided to investigate the synthetic manipulation of 1 to medium sized rings 3 (Scheme 1).
The cycloadduct 1a was first converted into triol ta upon

Scheme 1. Fragmentation reaction of 2 .

Scheme 2. Synthesis and tragmentation reaction of mesylate $2 \mathbf{2 a}$. (a) (i) $\mathrm{Bu}_{3} \mathrm{SnH}, \mathrm{AlBN}$, benzene, reflux, (ii) $\mathrm{LiAlH}_{4}, \mathrm{Et}_{2} \mathrm{O}, 0^{\circ} \mathrm{C}$; (b) (i) $\mathrm{TBAF}, \mathrm{THF}$, it, (ii) TBSCI, imidazole, it: (c) $\mathrm{MsCl}, \mathrm{Et}_{3} \mathrm{~N}$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$.
debrominations with 2 equiv of $\mathrm{Bu}_{2} \mathrm{SnH}$ and reductive opening of the lactone bridge with excess LiAlH_{4} (Scheme 2). Deprotection of TMS followed by selective protection of the primary alcohol with TBS afforded 5a. Subsequent mesylation of the secondary hydroxyl group of $5 a$ would set the stage for the Wharton/Grob fragmentation reaction. However. the attempted mesylation of $5 a$ furnished aromatized product 6a in quantitative yield instead of the desired ketone 3a. Evidently, the initially formed putative mesylate 2a further underwent β-elimination and dehydration reaction. Rumuing the mesylation reaction at lower temperatures produced similar results.

Triol 5a was then hydrogenated into 7a before the mesylation. envisioning the removal of the double bond may suppress the ensuing β-elimination reaction (Scheme 3). Treatment of 7 a with MsCl indeed provided mesylate 8 a in good yield. However, subjection of mesylate 8 a into the Wharton/ Grob fragmentation conditions resulted in the formation of alkene 9a. rather than the fragmentation product (Scheme 3).

During the investigation. Marko and coworkers reported an efficient radical fragmentation protocol for the Wharton/ Grob type ring expansion reactions of bicyclic tertiary hydroxyl ketones. providing 9-. 10-, and 11-membered

Scheme 3. Mesylation and fragmentation reaction of 7a.

Scheme 4 . Synthesis and fragmentation reaction of ketone 10a. (a) Dess-Martun periodinane, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt, (b) $\mathrm{HgO}_{2}, \mathrm{I}_{2}, \mathrm{CCl}_{4}, \mathrm{rt}$, hv.

Scheme 5 . Synthesis and fragmentation reactions of ketones $10 \mathrm{~b}-10 \mathrm{e}$. (a) Dess-Martin periodinanle, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt: (b) $\mathrm{HgO}, \mathrm{I}_{2}, \mathrm{CCl}_{4}$, rt, he.
diketo-macrocycles. ${ }^{7}$ Triol 7 a was then oxidized to ketone 10a. prior to the fragmentation reaction. Subjection of the resultant ketone 10a into the Marko's conditions afforded the ring expansion product 11a in 86% yield (Scheme 4).
The above protocol was equally effective for the fragmentation of other bicyclic system 10b-10e. providing 11b-11e in good yields (Scheme 5). Tributyltin hydride mediated deiodination reactions furnished 8-, 9-, 10-. 11-. 12-membered diketones in $80-85 \%$ yields.
In summary. the tricyclolactones 1 prepared from the Diels-Alder reactions of 3.5 -dibromo-2-pyrone and cyclic silyl enol ethers were successfully converted into 8-. 9-. 10-11-. and 12-carbon medium sized macrocycles 11a-11e in good overall yields with the Wharton/Grob fragmentation protocol developed by Marko and coworkers as key step.

Experimental Section

General Methods. ${ }^{1}$ H NMR spectra were recorded at 400 MHz and ${ }^{13} \mathrm{C}$ NMR spectra at 100 MHz , with either TMS (δ $=0$) or the signal for residual CHCl_{3} in the CDCl_{3} solvent (δ $=7.24$) as intennal standards. J values are reported in Hz . High resolution mass spectra were measured by using FAB method. Flash column chromatography was performed with $230-400$ mesh grade silica-gel. All solvents used were purified according to standard procedures.
Preparation of 7a as Representative Procedure for 7b7e: To a solution of 5 a (300 mg .0 .96 mmol) in dried THF $(4.0 \mathrm{~mL})$ was added $10 \mathrm{wt} \% \mathrm{Pd}-\mathrm{C}$ at rt . The mixture was degassed and subjected to a hydrogen atmosphere and agitated at it for 8 h . The reaction mixture was then filtered through a plug of Celite concentrated in vacuo. and purified by flash column chromatography (hexane/EtOAc $=10 / 1$) to afford 253 mg of the product 7 a in 84% yield. ${ }^{\mathrm{H}} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz} . \mathrm{CDCl}_{3}\right) \delta 4.09$ (bs. 1 H$) .3 .76(\mathrm{t}, J=9.9 \mathrm{~Hz} . \mathrm{IH}) .3 .61$ (dd, $J=9.9 .5 .1 \mathrm{~Hz}, 1 \mathrm{H}), 2 \cdot 13-2.08(\mathrm{~m} .1 \mathrm{H}) .1 .85-1.68(\mathrm{~m}$. $5 \mathrm{H})$. 1.60-1.51 (m, 6H). 1.44-1.33 (m. 1H) . 1.23-1.18 (m. $1 \mathrm{H}) .0 .90(\mathrm{~s}, 9 \mathrm{H}), 0.08$ (s. 6 H$) \cdot{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 73.5,73.3,65.6,48.6 .44 .9 .34 .0 .28 .4,25.8,25.8,22.6$. 20.2. 20.1. 17.9. -5.8 ; HRMS $\left(\mathrm{M}+\mathrm{Na}^{+}\right)$Calcd for $\mathrm{C}_{17} \mathrm{H}_{3} \mathrm{NaO}_{3} \mathrm{Si}: 337.2175$, found 337.2181 .
Preparation of 10a as Representative Procedure for $10 \mathrm{~b}-10 \mathrm{e}$: To a round bottom flask were charged of 7 a (210 mg .0 .67 mmol) and anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4.0 \mathrm{~mL})$. DessMartin periodinane ($321 \mathrm{mg}, 0.73 \mathrm{mmol}$) was slowly added
into the solution at it. The reaction mixture was vigorously stirred for 30 min . After the reaction. the resulting solution was diluted with ether. successively washed with sat. NaHCO_{3} (aq) and sat. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(\mathrm{aq})$. The organic solution was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and purified by columu chromatography (hexane/ EtoAc $=5 / 1$) to provide 204 mg of product 10 a in 98% yield. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.81(\mathrm{t} . J=10.3 \mathrm{~Hz}$. $1 \mathrm{H}) .3 .73$ (dd, $J=10.3 .5 .1 \mathrm{~Hz} .1 \mathrm{H})$. $2.48-2.47(\mathrm{~m} .1 \mathrm{H}) .2 .38-$ 2.33 (m. 3H). 2.05-2.01 (m. 1H). 1.83-1.60 (m. 4H). 1.55$1.44(\mathrm{~m} .2 \mathrm{H}) .1 .43-1.16(\mathrm{~m} .3 \mathrm{H}) .0 .92$ (s. 9H). 0.12 (s. 6 H): ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz} . \mathrm{CDCl}_{3}$) $\delta 209.6$. $75.9,65.1$. 56.1 . 47.1, 40.0. 28.9. 25.8. 23.4. 21.7. 20.5. 19.8. 18.0. -5.8: HRMS (M $+\mathrm{Na}^{+}$) Calcd for $\mathrm{C}_{17} \mathrm{H}_{32} \mathrm{NaO}_{3} \mathrm{Si}: 335.2018$, found 335.2012 .
Preparation of 11a as Representative Procedure for 11b-11e: To a round bottom flask were charged 10 a (59 mg . 0.19 mmol) and anhydrous $\mathrm{CCl}_{4}(3.0 \mathrm{~mL})$. To the solution were added yellow $\mathrm{HgO}(123 \mathrm{mg} .0 .57 \mathrm{mmol})$. $\mathrm{I}_{2}(192 \mathrm{mg}$. 0.76 mmol) at rt . The reaction mixture was irradiated with 500 W tungsten lamp with vigorous stirring for 2 h . After the reaction. the reaction mixture was filtered through a plug of Celite. diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with sat. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ (aq). The organic layer was died over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, concentrated in vacuo. and purified by flash column chromatography (hexane $/ \mathrm{EtOAc}=30 / 1$) to afford 71 mg of the product 11a in 86% vield. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz} . \mathrm{CDCl}_{3}$) $\delta 4.43\left(\mathrm{dd}^{2}, J=11.7\right.$. $3.3 \mathrm{~Hz} .1 \mathrm{H}) .3 .62-3.51(\mathrm{~m} .2 \mathrm{H}) .3 .04-2.96(\mathrm{~m} .1 \mathrm{H})$. $2.91-$ $2.84(\mathrm{~m} .1 \mathrm{H}) .2 .74-2.65(\mathrm{~m} .2 \mathrm{H}) .2 .33-2.21(\mathrm{~m} .2 \mathrm{H}) .2 .15-$ $2.07(\mathrm{~m} .1 \mathrm{H}) .1 .85-1.73(\mathrm{~m} .3 \mathrm{H}) .1 .66-1.60(\mathrm{~m} .2 \mathrm{H})$. $1.50-$ $1.43(\mathrm{~m} .1 \mathrm{H}) .0 .83(\mathrm{~s} .9 \mathrm{H}) .0 .00(\mathrm{~d} .6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 215.6,206.8$. 66.1, $52.2,46.1$. 35.1. 33.8. 32.1. 28.4. 25.8. 23.4, 21.4, 18.1, -5.7 : HRMS $\left(\mathrm{M}+\mathrm{Na}^{-}\right)$ Calcd for $\mathrm{C}_{17} \mathrm{H}_{31} \mathrm{INaO}_{3} \mathrm{Si}: 461.0985$, found 461.0989 .

Acknowledgment. This work was supported by the grant R01-2006-000-11283-0 from the Basic Research Program of the Korea Science \& Engineering Foundation. K.H.M. and K.H.Y. thank the BK21 fellowship.

References

1. (a) Deyup. S. T.: Swenson1. D. C.: Gloer. J. B.: Wicklow. D. T. J. Mat. Prod. 2006. 69, 608. (b) Ivkovic. A.: Matovic, R.: Saicic, R. N. Org. Lett. 2004. 6, 1221 . (c) Kende. A. S.: Kaldor, I.; Aslanian. R. J. Am. Chem. Soc. 1988, 110. 6265.
2. For a recent related review see: Yet, L. (hem. Rev 2000. 100, 2963.
3. (a) Lysenko. I. L.: Lee. H. G.: Cha. J. K. Org. Left. 2006. 8. 2671. (b) Tambar. U. K.: Stoltz. B. M. J. Am. Chem. Soc. 2005.127. 5340. (c) Posner. G. H.: Hatcher. M. A.: Maio. W. A. Org. Lett. 2005, 7. 4301. (d) Marmsater. F. P:: Murphy. G. K.; West. F. G. J. Am. Chem. Soc. 2003. 125. 14724. (e) Molander. G. A.; Huerou. Y. L.: Brown. G. A. J. Org Chem. 2001, 66, 4511.
4. (a) Felv. C.: Galindo. T.: Etter. O.: Thommen. W. Angew. Chen. Int. Ed. 2002. 4]. 4523. (b) Paquett. L. A.: Yang. J.: Long. Y. O. J. An. Chen. Soc. 2002. 12t. 6542. (c) Wharton. P. S.: Hiegel. G. A. J. Org. Chem. 1965, $30,3254$.
5. For a recent review on the Diels-Alder cycloadditions of 3,5 -dibromo-2-pyrone, see: Kim, H.-Y.; Cho, C.-G. Prog. Heterocych. Chent. 2007. in press.
6. Cho. C.-G.: Kim. Y.-W.: Kimn. W.-K. Ierrahedron Lett. 2001. t2. 8193.
7. Dobbeleer, C. D.; Ates. A.: Vanherk, J.-C.: Markó, I. E. Tetrahedron Lett. 2005, 46.3889.
