INVOLVEMENT OF p27CIP/KIP IN HSP25 OR INDUCIBLE HSP70 MEDIATED ADAPTIVE RESPONSE BY LOW DOSE RADIATION

  • Seo, Hang-Rhan (Laboratory of Radiation Effect and Korea Institute of Radiological and Medical Sciences) ;
  • Chung, Hee-Yong (Department of Microbiology, College of Medicine, Hanyang University) ;
  • Lee, Yoon-Jin (Laboratory of Radiation Effect and Korea Institute of Radiological and Medical Sciences) ;
  • Baek, Min (Atomic Energy Policy Division, Atomic Energy Bureau, Ministry of Science and Technology) ;
  • Bae, Sang-Woo (Laboratory of Radiation Effect and Korea Institute of Radiological and Medical Sciences) ;
  • Lee, Su-Jae (Laboratory of Radiation Experimental Therapeutics, Korea Institute of Radiological and Medical Sciences) ;
  • Lee, Yun-Sil (Laboratory of Radiation Effect and Korea Institute of Radiological and Medical Sciences)
  • Published : 2006.04.01

Abstract

Thermoresistant (TR) clones of radiation-induced fibrosarcoma (RIF) cells have been reported to show an adaptive response to 1cGy of low dose radiation, and HSP25 and inducible HSP70 are involved in this process. In this study, to further elucidate the mechanism by which HSP25 and inducible HSP70 regulate the adaptive response, HSP25 or inducible HSP70 overexpressed RIF cells were irradiated with 1cGy and the cell cycle was analyzed. HSP25 or inducible HSP70 overexpressed cells together with TR cells showed increased G1 phase after 1cGy irradiation, while RIF cells did not. $[^3H]-Thymidine$ and BrdU incorporation also indicated that both HSP25 and inducible HSP70 are involved in G1 arrest after 1cGy irradiation. Molecular analysis revealed upregulation of p27Cip/Kip protein in HSP25 and inducible HSP70 overexpressed cells, and cotransfection of p27Cip/Kip antisense abolished the induction of the adaptive response and 1cGy-mediated G1 arrest. The above results indicate that induction of an adaptive response by HSP25 and inducible HSP70 is mediated by upregulation of p27Cip/Kip protein, resulting in low dose radiation-induced G1 arrest.

Keywords

References

  1. S.Z. Liu, L.Cai and J.B. Sun, 'Effect of low-dose radiation on repair of DNA and chromosome damage,' Acta. Biol. Hung., 41, 149 (1990)
  2. Z.Q. Wang, S. Saigusa and M.S. Sasaki, 'Adaptive response to chromosome damage in cultured human lymphocytes primed with low dose of X-rays,' Mutat. Res., 246, 179 (1991) https://doi.org/10.1016/0027-5107(91)90120-D
  3. S.J. Hyun, M.Y. Yoon, T.H. Kim and J.H. Kim, 'Enhancement of mitogen-stimulated proliferation of low dose radiation-adapted mouse splenocytes,' Anticancer Res., 17, 225 (1997)
  4. M.S. Sasaki, 'On the reaction kinetics of the radioadaptive response in cultured mouse cells,' Int. J. Radiat. Biol., 68, 281 (1995) https://doi.org/10.1080/09553009514551211
  5. E.I. Azzam, G.P. Raaphorst and F.E.J. Mitchel, 'Radiation -induced adaptive response from protection against micronucleus formation and neoplastic formation in C3H 10T1/2 mouse embryo cells,' Radiat. Res., 138, S28 (1994) https://doi.org/10.2307/3578755
  6. O. Rigaud, D. Apadopoulo and E. Moustacchi, 'Decreased deletion mutation in radioadapted lymphoblasts,' Radiat. Res., 133, 94 (1993) https://doi.org/10.2307/3578262
  7. A.C. Upton, 'Radiation hormesis: data and interpretations,' Crit. Rev. Toxicol., 31, 681 (2001) https://doi.org/10.1080/20014091111956
  8. L. Johansson, 'Hormesis, an update of the present position,' Eur. J. Nucl. Med. Mol. Imaging, 30, 921 (2003) https://doi.org/10.1007/s00259-003-1185-2
  9. S. Wolff, 'Is radiation all bad ? The search for adaptation,' Radiat. Res., 131, 117 (1992) https://doi.org/10.2307/3578431
  10. I. Vorobtsova, A. Semenov, N. Timofeyeva, A. Kanayeva and I. Zvereva I, 'An investigation of the age-dependency of chromosome abnormalities in human populations exposed to low-dose ionizing radiation,' Mech. Ageing Dev., 122, 1373 (2001) https://doi.org/10.1016/S0047-6374(01)00275-5
  11. S.H. Park, H.K Jeong, S.Y. Yoo, C.K. Cho and Y.S. Lee, 'Different induction of adaptive response to ionizing radiation in normal and neoplastic cells,' Cell. Biol. Toxicol., 15, 111 (1999) https://doi.org/10.1023/A:1007525531145
  12. M.J. Gething and J. Sambrook, 'Protein folding in the cells,' Nature, 355, 33 (1992) https://doi.org/10.1038/355033a0
  13. D. Lu, N. Maulik, I.I. Moraru, D.L. Kreutzer and K.K. Das, 'Molecular adaptation of vascular endothelial cells to oxidative stress,' Am. J. Physiol., 264, C715 (1993) https://doi.org/10.1152/ajpcell.1993.264.3.C715
  14. K. Suzuki, S. Kodama and M. Watanabe, 'Effect of low dose preirradiation on induction of theHSP70B-LacZ fusion gene in human cells treated with heat shock. Radiat. Res., 149, 195 (1998) https://doi.org/10.2307/3579930
  15. Y. Ibuki, A. Hayashi, A. Suzuki and R. Goto, 'Low dose irradiation induces expression of heat shock protein 70 mRNA and thermo- and radio-resistance in myeloid leukemia cell line,' Biol. Pharm. Bull., 21, 434 (1998) https://doi.org/10.1248/bpb.21.434
  16. S. Sadekova, S. Lehnert and T.Y.K. Cho, 'Induction of PBP74/mortalin/Grp75, a member of the hsp70 family, by low doses of ionizing radiation: a possible role in induced radioresistance,' Int. J. Radiat. Biol., 72, 653 (1997) https://doi.org/10.1080/095530097142807
  17. Y.J. Lee, G.H. Park, H.N. Cho, C.K. Cho, Y.M. Park, S.J. Lee and Y.S. Lee, Induction of adaptive response by lowdose radiation in RIF cells transfected with HSP25 or inducible HSP70. Radiat. Res., 157, 371 (2002) https://doi.org/10.1667/0033-7587(2002)157[0371:IOARBL]2.0.CO;2
  18. Y.J. Lee, H.N. Cho, D.I. Jeoung, J.W. Soh, C.K. Cho, S. Bae, H.Y. Chung, S.J. Lee and Y.S. Lee, 'HSP25 overexpression attenuates oxidative stress-induced apoptosis: roles of ERK1/2 signaling and manganase superoxide dismutase,' Free Rad. Biol. Med., 36, 429 (2004) https://doi.org/10.1016/j.freeradbiomed.2003.11.009
  19. M. Nomuta, N. Nomura, E. Newcomb, Y. Lukyanov, C. Tamasdan, D. Zagzag, 'Galdanamycin induces mitotic catastrophe and subsequent apoptosis in human glioma cells,' J. Cell. Physiol., 201, 374 (2004) https://doi.org/10.1002/jcp.20090
  20. J. Milia, F. Teyssier, F. Dalence, I. Ader, C. Delmas, A. Pradines, I. Lajoie-Mazene, R. Baron, J. Bonnet, E. Cohen-Jonathan, G. Favre, C. Toulas, 'Farnesylated ThoB inhibits radiation-induced mitotic cell death and controls radiationinduced centrosome overduplication,' Cell Death Differ., 12, 492 (2005) https://doi.org/10.1038/sj.cdd.4401586
  21. G. Olivieri, J. Bodycote and S. Wolff, 'Adaptive response of human lymphocytes to low concentration of radioactive thymidine,' Science, 223, 594 (1984) https://doi.org/10.1126/science.6695170
  22. J.C. Shadley, 'Chromosomal adaptive response in human lymphocytes,' Radiat. Res., 138, S9 (1994) https://doi.org/10.2307/3578750
  23. E.I. Azzam, S.M. de Toledo, G.P. Raaphorst and R.E.J. Mitchell, 'Radiation induced radioresistance in a normal human skin fibroblast line,' In Low Dose Irradiation and Biological Defense Mechanisms (T. Sugahara, LA Sagan and T Aoyama Eds) pp291-294, Elsvier Amsterdam (1992)
  24. R.Y.C. Poon, 'Cell cycle control,' In Encyclopedia of Cancer. (J.R. Bertino Ed) Academic Press, San Diego, vol 1, pp 246-255 (1997)
  25. J.W. Harper and S.J. Elledge, 'Cdk inhibitors in development and cancer,' Curr. Opin. Genet. Dev., 6, 56 (1996) https://doi.org/10.1016/S0959-437X(96)90011-8
  26. R.P. Fisher, 'CDKs and cyclin s in transitions(s),' Curr. Opin. Genet. Dev., 7, 32 (1997) https://doi.org/10.1016/S0959-437X(97)80106-2
  27. D.O. Morgan, 'Principels of CKD regulation,' Nature, 374, 131 (1995) https://doi.org/10.1038/374131a0
  28. C.J. Sherr and J.M. Roberts, 'Inhibitors of mammalian G1 cyclin-dependent kinases,' Genes Dev., 9, 1149 (1995) https://doi.org/10.1101/gad.9.10.1149
  29. K. Polyyak, M.H. Lee, B. J. Erdjument Bromage, A. Koff, J.M. Roberts, P. Tempest and J. Massague, 'Cloning of p27Kip, a cyclin dependent kinase inhibitor nd a potential mediator of extracellular antimitogenic signals,' Cell, 78, 59 (1994) https://doi.org/10.1016/0092-8674(94)90572-X
  30. H. Toyoshima and T. Hunter, 'p27 a novel inhibitor of G1 cyclin-CDK protein kinase activity, is related to p21,' Cell, 78, 67 (1994) https://doi.org/10.1016/0092-8674(94)90573-8
  31. I. Reynisdottir, K. Polyak, J. Massague and C.J. Sherr, 'Cyclin AMP induced G1-phase arrest mediated by an inhibitor of cyclin dependent kinase 4 activation,' Cell, 79, 487 (1994) https://doi.org/10.1016/0092-8674(94)90257-7
  32. Ferro M, Rivkin M, Tasch M, Porter P, Carrow C, Firpo E, Polyak K, Tsai L, Broudy V, Perlmutter R, Kawshamsky K Roberts JM, 'A Syndrome of multiorgan hyperplasia with features of gigantism, tumorigenesis, and female sterility in p27Kip deficient mice,' Cell, 85, 721 (1996) https://doi.org/10.1016/S0092-8674(00)81238-6
  33. Nakayam K, Ishida N, Shirane M, Inomata A, Inoue T, Shishido N, Horii I, Loh DY, Nakayama K, 'Mice lacking p27Kip display increased body size multiple organ hyperplaisa, retinal dysplasia, and pituitary tumors,' Cell, 85, 707 (1997) https://doi.org/10.1016/S0092-8674(00)81237-4