Fluoride single crystals for UV/VUV nonlinear optical applications

  • Published : 2006.08.31

Abstract

The growth characteristics and properties of large size $SrAlF_5$ single crystals are described and compared with those of $BaMgF_4$. Transmission spectra in the vacuum ultraviolet wavelength region indicate a high transparency of $SrAlF_5$ (about 90% without considering surface reflection loses) down to 150 nm, on contrast to the optical loses observed for $BaMgF_4$. The ferroelectric character of $SrAlF_5$ is evidenced by the reversal of the spontaneous polarization in a hysteresis loop. The higher potential of $SrAlF_5$ in comparison with $BaMgF_4$ for the realization of all-solid-state lasers in the ultraviolet wavelength region by the quasi-phase matching (QPM) technique is pointed out. $SrAlF_5$, besides a higher grade of transparency, shows a nonlinear effective coefficient similar to that of quartz and uniaxial nature, on contrast to the one order smaller nonlinear coefficient and biaxial character of $BaMgF_4$. The refractive index of $SrAlF_5$ from the ultraviolet to the near-infrared wavelength region is measured by the minimum deviation method. The Sellmeier and Cauchy coefficients are obtained from the fits to the curves of the ordinary and extraordinary refractive indices, and the grating period for the first order QPM is estimated as a function of the wavelength. The poling periodicity for 193 nm SHG from 386 nm is $4{\mu}m$.

Keywords

References

  1. J.A. Armstrong, N. Bloembergen, J. Duncan and P.S. Pershan, 'Interactions between light waves in a nonlinear dielectric', Phys. Rev. 127 (1962) 1918 https://doi.org/10.1103/PhysRev.127.1918
  2. M.M. Fejer, GA. Magel, D.H. Jundt and R.L. Byer, 'Quasi-phase-matched second harmonic generation: tuning and tolerances', IEEE J. Quantum Electron. 28 (1992) 2631 https://doi.org/10.1109/3.161322
  3. J.P. Meyn and M.M. Fejer, 'Tunable ultraviolet radiation by second-harmonic generation in periodically poled lithium tantalate', Opt. Lett. 22 (1997) 1214 https://doi.org/10.1364/OL.22.001214
  4. E.T. Keves, S.C. Abrahams and J.L. Bernstein, 'Crystal structure of pyroelectric paramagnetic barium manganese fluoride, $BaMnF_4$', J. Chern. Phys. 51 (1969) 4928 https://doi.org/10.1063/1.1671885
  5. M. Eibschuetz, H.J. Guggenheim, S.H. Wemple, I. Camlibel and M. DiDomenico, 'Ferroelectricity in $BaM^{2+}F_{4}$' , Phys. Lett. 29A (1969) 409
  6. N.W. Ashcroft and N.D. Mermin, 'Solid State Physics', Saunders College Publishing (Harcourt College Publishers, USA, 1976)
  7. M. Eibschutz and H.J. Guggenheim, 'Antiferromagnetic-piezoelectric crystals : $BaMF_{4}$ (M = Mn, Fe, Co and Ni)', Solid Sate Commun. 6 (1968) 737
  8. J.M. Rey, H. Bill, D. Lovy and H. Hagemann, 'Europium doped $BaMgF_{4}$, an EPR and optical investigation', J. Alloys Compd. 268 (1998) 60 https://doi.org/10.1016/S0925-8388(97)00606-3
  9. N. Kodama, T Hoshino, M. Yamaga, N. Ishizawa, K. Shimamura and T Fukuda, 'Optical and structural studies on $BaMgFe_{4} : Ce^{3+}$ crystals', J. Cryst. Growth 229 (2001) 492 https://doi.org/10.1016/S0022-0248(01)01215-5
  10. T Hayashi, M. Yoshihara, S. Ohmi and E. Tokumitsu, 'Electrical properties of ferroelectric $BaMgF_{4}$ films grown on GaAs substrates using AIGaAs buffer layer', Appl. Surf. Science 117/118 (1997) 418 https://doi.org/10.1016/S0169-4332(97)80117-1
  11. S. Sinharoy, H. Buhay, M.H. Francombe, W.J. Takei, N.J. Doyle, J.H. Fieger, D.R. Lampe and E. Stepke, 'Growth and characterization of ferroelectric $BaMgF_{4}$ films', J. Vac. Sci. Technol. A9 (1991) 409
  12. S.C. Buchter, TY. Fan, V. Liberman, J.J. Zayhowski and M. Rothschild, Periodically polled $BaMgF_{4}$ for ultraviolet frequency generation', Opt. Lett. 26 (2001) 1693 https://doi.org/10.1364/OL.26.001693
  13. J.P. Meehan and E.J. Wilson, 'Single crystal growth and characterization of $SrAIF_{5} and Sr_{1-x}Eu_{2+x}AIF_{5}$', J. Cryst. Growth 15 (1972) 141 https://doi.org/10.1016/0022-0248(72)90136-4
  14. R, von der Millill, S. Anderson and J. Galy, 'Sur quelques fluometallates alcalino-terreux. I. Structure cristalline de $BaFeF_{5}, et SrAIF_{5}$', Acta Cryst. B27 (1971) 2345
  15. S.C. Abrahams, J. Ravez, A. Simon and J.P. Chaminade, ' Ferroelectric behavior and phase transition at 715 Kin $SrAIF_{5}$', J. Appl. Phys. 52 (1981) 4740 https://doi.org/10.1063/1.329308
  16. F. Kubel, 'The crystal structures of $SrAIF_{5} and Ba_{0.43(1)}Sr_{0.57(1)}AIF_{5}$', Z. Anorg. Alig. Chern. 624 (1998) 1481 https://doi.org/10.1002/(SICI)1521-3749(199809)624:9<1481::AID-ZAAC1481>3.0.CO;2-F
  17. M. Weil, E. Zobetz, F. Werner and F. Kuber, 'New alkaline earth aluminium fluorides with the formula (M,M')$AIF_{5}$ (m,M') = Ca, Sr, ba', Solid State Sciences 3 (2001) 441 https://doi.org/10.1016/S1293-2558(01)01165-7
  18. J. Ravez, S.C. Abrahams, J.P. Chaminade, A. Simon, J. Granner and P. Hagenmueller, 'Ferroelectric behavior and phase transitions in the $SrAIF_{5}$ family', Ferroelectries 38 (1981) 773 https://doi.org/10.1080/00150198108209535
  19. M. Rolin and M. Clausier, 'Le systeme fluorure de calcium fluorure de baryum-fluorure de magnesium', Rev. Int. Hautes Temp. Refract. 4 (1967) 42
  20. S.C. Abrahams and E.T. Keve, 'Structural basis of ferroelectricity and ferroclasticity', Ferroelectrics 2 (1971) 129 https://doi.org/10.1080/00150197108241502
  21. M. DiDomenico, J.M. Eibschuetz, H.J. Guggenheim and I. Camlibel, 'Dielectric behavior of ferroelectric $BaMF_{4}$ above room temperature', Solid State Commun. 7 (1969) 1119 https://doi.org/10.1016/0038-1098(69)90497-9
  22. H.G.J.G Berman and GR. Crane, 'Linear and nonlinear optical properties of ferroelectric $BaMgF_{4} and BaZnF_{4}$' , J. Appl. Phys. 46 (1975) 4645 https://doi.org/10.1063/1.321541
  23. K. Shimamura, E.G. Villora, K. Muramatsu and N. Ichinose, 'Advantageous growth characteristies and properties of SrAIFs compared with $BaMgF_{4}$ for UVNW nonlinear optical applications', J. Cryst. Growth (2004)
  24. L. Myers, R. Eckardt, M. Fejer, R. Byer, W. Bosenberg and J. Pierce, 'Quasi-phase-matched optical parametric oscillators in bulk periodically poled $LiNbO_{3}$', J. Opt. Soc. Am. B 12 (1995) 2102 https://doi.org/10.1364/JOSAB.12.002102