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This paper proposes a LuGre Model-Based Neural Network (MBNN) friction compensation algorithm for a linear
motor stage. For matching the friction phenomena in both the motion-start region and the motion-reverse region, the
LuGre dynamic model is employed into the proposed compensation algorithm. After training of the model-based
neural network is completed, the estimated friction for compensation is obtained. From the obtained result we find
that the new structure gains advantage over the non-friction compensation system on the performance of the
compensator in both regions. The proposed compensator is evaluated and compared experimentally with an
uncompensated system on a microcomputer controlled linear motor tracking system in the final section of the paper.
The experimental results show the improvement on the maximum velocity error and the root mean square tracking
error in the motion-start region ranges from 34% to 53% and from 53% to 75% respectively, and in the motion-

reverse region from 48% to 65% and from 79% to 90% respectively.

1. Introduction

Friction is one of the major limitations in performing high
precision motion systems. It induces undesirable phenomena such as
stick-slip oscillation, steady state error, and poor tracking
performance. For reducing the undesirable phenomena induced by
friction, friction models for different fields, i.e. tribology, dynamics,
and control” 2, are therefore developed. In general, frictions are
grouped into two types, i.e., the static friction model and the dynamic
friction model. While the static model defines static map between
velocity and friction force which has static, coulomb, and viscous
friction components, the dynamic friction model predicts the
nonlinear behavior of friction under micro-dynamic scale and the
macro-dynamic scale. Having a good dynamic friction model is a
necessity for suitable control scheme to fulfill the stringent
requirement in tracking and positioning accuracy.

Leonardo da Vinci, Coulomb, Renolds and Stribeck et al. made a
contribution to construct various classical friction models'. They
specified that the friction force at zero velocity should be equal to the
sum of external force. It is hard to detect the velocity reversal point
in simulations or experiments, however. Kamopp3 proposed a
method to predict friction without accurate detection of zero velocity.
By Sepehri et al.®, the Karnopp model was found possible to cause
numerical instabilitics in the stick phase. Leine’ proposed a switch
friction model to overcome the numerical instabilities. Unfortunately,
the classical static models as above failed to provide any information
about presliding displacement (micro-slip) in stiction regime and
friction lag. Therefore, Armstrong-Helouvry® proposed a seven-
parameter integrated friction model with various observed friction
phenomena.  This model comprises parameters to account for the
presliding displacement, Coulomb, viscous, and Stribeck friction.
The behavior of state variable friction models proposed by Armstro

ng-Helouvry resembles the behavior of a stift (nonlinear) spring
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in pre-sliding region, and also describes the behaviors of slipping
region without switch mechanism. Dahl model”, which could predict
friction lag between velocity reversals and leaded to hysteresis loops,
was the first model in the form of state variable. Canudas de Wit et
al® extended and modified the Dahl model by including arbitrary
steady state characteristics, and proposed a modified Dahl model (or
the LuGre friction model). This model captured most of the friction
behavior observed experimentally.

As motioned above, several friction models have been widely
studied. Various compensation strategies based on different models
were employed. Gao ef af.® and Kovacic et al.'® proposed black box
neural networks to predict real friction for a DC motor servo system.
They used the reference command, motion position, and velocity as
the neural networks inputs. Gao et al.® performed an off-line training
method to get the neural network weightings and only simulation
results were shown in their research to compare their friction
compensation performance. Kovacic et al."® constructed two neural
networks to estimate static friction and gravitation-dependent load.
They trained the first neural network from a Tustin’s static model.
Simultaneously, the second neural network has been trained from a
shaft load with a regular sine function. The experimental results
obtained showed that addition of neural network-based estimators
may considerably increase the performance of the servo system.
However, since the use of static fiction and the limit of sensor
resolution, the approach can not capture the friction phenomenon in
micro motion, such as the stick-slip and Stribeck effect. Furthermore,
other nonlinear effects, such as the backlash, affected the experiment
results.  Yen ef al'' combined two friction models, a black box
neural network friction estimator for the direction-change region and
a conventional Coulomb-friction-based input-output model for the
non-direction-change region. From their experimental results, the
tracking performance can be improved only in the direction-change
region. It indicates that another neural network structure or friction
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compensator should be concerned in non-direction-change region to
improve alf tracking performance.

Dk Boi o BB OPRS Provide oniy siatic mappiig between
inputs and outputs. Regardless of their type, however, neural
networks are generally disadvantaged by their “black box™ format.
Furthermore, these networks require prohibitively extensive training,
and are hard to interpret once trained'>.  Gan and Danai'? proposed
the model-based neural network (MBNN) for modeling nonlinear
dynamic systems. The MBNN structure is formulated according to a
lincarized state space model of the dynamic system. After training
weightings, adaptation to nonlinearities of the plant is confined to the
activation functions of individual nodes. In this paper, the concept of
model-based neural network is adopted for nonlinear dynamic friction
modelling based on the known friction model, the LuGre friction
model. We use multilayer neural networks (MNN) method to
perform the LuGre MBNN. The neural network weightings are
different in motion start region and in velocity reversal region since
the friction behavior is different in these two regions”. Suitable
initial training coefficients and training signals are chosen to update
the neural network weightings in each region. Furthermore, we
combine two neural networks in each region for friction
compensation in a linear slide motion contro! system. The remainder
of this paper is organized as follows. In the following section, the
experimental system and the LuGre friction model are described. In
section 3, a LuGre model-based neural network friction compensator
and the back-propagation training procedures are proposed.
Comparisons of the experimental results in motion start region and
the velocity reversal region are made in section 4. Conclusions are
given in section 5.

2. Dynamics of Linear Motor Stage

The linear slide systems are the most common applications of
motion control. Traditionally, most of the linear slide systems are
ball-screw-driven, but the linear-motor-driven systems are becoming
popular in recent years due to their simple structure and absence of
flexible coupling. From the friction study viewpoint, the existing
backlash and compliance in a ball-screw-driven system may induce
nonlinear phenomena with multi-source friction effects. This makes
it practically impossible to distinguish friction from other nonlinear
effects. On the contrary, linear-motor-driven systems are free from
the complicated situation because nonlinear backlash and multi-
source frictions do not exist in the systems. The observed friction
behaviors will be quite different for the same reason. In this paper, a
linear-motor-driven motion system is under study.

2.1 Hardware setup

The experimental motion system illustrated in Fig. 1 and Fig. 2
consists of following components: a linear-motor-driven motion
system, a laser displacement meter, and a PC (PC1 in Fig. 1) with a
DAC and encoder interface. The linear motor system is composed of
a linear motor (IL6-050A1) and an AC servo amplifier
(SERVOSTAR CD) operating in torque (current) mode, both of
which are made by Kollmorgen Corporation'®. In addition, two
sensors are in use in this system, i.e., a linear scale (RENISHAW
RGH24Y, resolution 0.1 micrometer) which provides position
information for the vector control of servo amplifier, and a fiber optic
laser encoder (RENISHAW RLE10) for measuring the displacement
of the motion table with adjustable resolutions. The accuracy of the
resolution supplied by RLE10 is influenced by environmental effects
such as relative humidity, temperature, pressurc and cosine errors.
Hence, calibration by another measurement instrument is required.
The RENISHOW laser interferometer system which includes an
environmental compensation unit (EC10) is in use. After calibration,
the basic fength units (BLU) for course and fine resolutions are found
to be 0.0791um and 0.020um, respectively. The choice of resolution
scale is dependent on the encoder transition time (1 MHz in our
system), desired maximum velocity, and travel range.

retrmetlector lazer head

ML larer linenr interferometer

[T___b: zsz=[z==s2=2=== =0 fnew etlector

ECH enviromunental
comyprensalon unit

(=5} { Liiesn motor motion systen

RENISHAYW Laser D
wlerferometer system :

RLE L0

fiber optic laser
encoder

F

Fig.1 The experimental linear-motor-driven motion system together
with the resolution calibration system

Fig.2 The photo of linear-motor-driven motion stage

2.2 Modeling of the linear motor stage
In general, the bandwidth of current loop is very fast as compared
with mechanical system. If the high frequency modes are ignored,
the system equation can be simplified as
J&sa B+ T, = u M
where J is the inertia (equivalent mass); B+ T, is the friction force;

and u is the input force to the system generated by a current-
controlled servo amplifier with PI velocity loop controller and P
position loop controller. The damping coefficient is considered as a
parameter of the controlled plant in this paper, therefore T,

represents the friction force without viscous friction term. Generally,
T, is function of position, velocity and control input force.

2.3 The dynamic LuGre model

In this section, the LuGre model is briefly described first. The
interface of two contact rigid bodies can be modeled as a lot of elastic
bristles. When a tangential force is applied, the bristles will deflect
like springs which give rise to friction force. If the force is
sufficiently large, some of the bristles deflect so much that they will
slip. The LuGre model based on the average behavior of the bristles
is described as follows.

e, M. @

dt 8(v)

T, =0,z+0, & 3
: dt

where z is the average bending displacement of bristles; v is the
relative velocity between the two bodies; g(v) is a positive function

of velocity; o, and o, are the stiffness and damping coefficient of
average behavior of bristles, and T, is the friction force due to

bristles” deflection. A term accounting for the viscous friction could
be added to last equation, and the whole friction force becomes

dz
f=0c,z+0, —+Bv *)
dt
where B is the viscous friction coefficient.

The function g(v) can be obtained by measuring the steady state

friction when the velocity is held constant. When velocity reaches
steady state, friction force is a static map versus velocity. Equations
(3) and (6) show this situation.

Sy =0z, + By ®
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v

gw)=Fo—(F. = F)(1-e "“‘w (©)
where jo i» the Coulomb (Rinctic) friction, /- is the stick foree.
The detailed

procedures for identifying parameters are described in Ref. 13 and the
results of the underlying system are listed in Table 1.

and the constant y is the Stribeck velocity.

Table | Parameters of the Experimental System
Symbol and name Value and unit

J, inertia 537 Kg
B,  viscous friction coefficient 111.65 Kg/s
F,» Stick force 21.49N
F. Coulomb friction 13.02N
v, Stribeck velocity constant 5.0lmm/s

s

c,, Bristle stiffness

2.61x10°Kg /s’
1.28x10°Kg/s

o,, Bristle damping Coeffi.

K,, force constant of motor 28.5 N/A
K,» gainofcurrent driver 0.349 Volt/A
T,  sampling rate 0.0005 sec

From our previous research, no Stribeck friction appears near the
velocity reverse region. Therefore, the positive function g(v) in the

LuGre model has to be modified as to let
gw)=F,
after the moving stage experiences Stribeck friction at motion start."

3. LuGre
Compensator

Model-Based Neural Network Friction

3.1 Model-based neural network '’

The neural network is structured according to a linearized state-
space model of the underlying system. If the discrete-time nonlinear
state-space model of the plant is defined as

x(k +1) = f(x(k),u(k)) (7)

(k) = h(x(k), uk)) (8)
where u(k), x(k) and y(k) represent the sampled values of the inputs,
states, and output at time k, respectively, then the linearized state-
space model has the form

x(k + 1) = Ax(k) + Bu(k) 9

(k) = Cx(k) + Du(k) (10)
The above model can be formulated as a neural network, having the
same number of input and outputs. An example of such a neural
network is shown in Fig. 3 for a second-order model

x(k+1) _ a,  a, |[xk) . b, u(k) an
X, (k+1) a, Gy | (X, (k) b,

{J’l(k)}zlicn ctzil{xl(k)}+|:dl ]u(k) (12)
y, (k) ey (%K) d,

The functions £, g, 4 and I, shown in Fig. 3, are adjustable neural
network functions.

Fig.3 Model-based neural network representing a second-order
plant'?

3.2 LuGre Model-Based Neural Network

The LuGre model-based neural network is used to compensate
the motion friction based on the LuGre friction model in Eq. (2) and
(3). After substituting Eq. (2) into Eq. (3), we get that the discrete
formula of Eq. (3) has the form

V) =0 ——|V(k1 O, |Z\K )+ oV
10110 K)ot a3

=4, (k))=(k)+ ovk)

where
~ [v() (14)
bube)=a 1= Lk
And Eq. (2) can be discretized by bilinear transformation
Z(kY= 0, (i) v (= D)l =1)+6,,, (k)oK )+ vk 1) (1s5)
where
7 [k —1) (16)

Y e

@, (vl -1))= T |v(k]

T2 b))

r a7
0, (V(k)) = ———2
l+£ Iv(k)' o,
2 g(v(k))

¥l

neural netvork Unit Delay

(%]
Fig. 4 LuGre Model-Based Neural Network (MBNN) structure

Then, we can get the block diagram of model-based neural
network structure, shown in Fig. 4, by Eq. (13) and Eq. (15). In this

structure, 9, @, and ¢,, are the neural networks and the
corresponding outputs are y n/, y n2 and y n3. The g  neural

network has one input layer, one hidden layer with n neurons and one
output layer. The ¢ neural network has one input layer, one

hidden layer with m neurons and one output layer. The ¢ neural

network has one input layer, one hidden layer with r neurons and one
output layer. Then, the neural network outputs have the forms

y_nl=8,,(k)

(18)
= IZILWIJISII.(IWI,] xu_nl+bi, _nl)+bo_nl
=
y_'12=<;,,,.(V(k),V(k-l)) 19
=il,wzjlszj(zzjlwz,/ xu_n2, +bi, _n2)+ho_n2
y,n3=¢:,,EV(k)) : (20)
=S LW3, 83, (IW3, xu_r3+bi, _n3)+bo_n3
i
where J
St, activated function in 0,,:
mwi, weighting from i-th input to j-th neuronin ¢ ;
LW, weighting from j-th neuron to k-th outputin g ;
bi, nl bias of j-th hidden layer’s neuralin ¢ ;
bo_nl bias of output layer in 0, :
u_nl input in 9, i.e. v(k):
52./ activated function in @,,°

w2, weighting from i-th input to j-th neural for @,

LW2, weighting from j-th neural to k-th output for ¢ -
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bi, n2 bias of j-th hidden layer’s neural in ¢_:

bo_ w2 hing of output faver in o

u_n2, input in 0, i.e. v(k), vik-1);

S3, activated functionin ¢_

[W3{_/ weighting from i-th input to j-th neural for ¢_;

LW3, weighting from j-th neural to k-th output for ¢_;

bi, _n3

bo _n3

u_n3

bias of j-th hidden layer’s neural in b,

bias of output layer in "

inputin ¢ . i.c.v(k).

The output of function blocks corresponding to 9, ¢, andg —are

B _nl=p_nlxy_nl (21

B n2=p n2xy_n2 (22)

B m3=p_n3xy_n3 (23)
And the friction output of the LuGre MBNN structure is

T, =B_m3+oy 24

3.3 Learning procedures for the LuGre MBNN friction

compensator

In Fig. 4, the input and output of the LuGre MBNN are velocity
and friction, respectively. The velocity is estimated from the fiber
optic laser encoder by of8 ~filter’® in our motion system. Since the

friction is impossible to measure on-line and might change with
environmental effects, such as humidity or temperature, the neural
network weightings in Eq. (18) ~ (20) will be trained by using the
learning architecture as shown in Fig. 5, where variant velocity
commands are fed into the real plant and the nominal plant to train the
neural network weightings. The manipulations in the dotted-line box
in Fig. 5 were executed in a computer. The nominal plant, 1/(_]s+ B),

in which the parameters J and B given in Table 1, is also modeled by
MBNN. The estimated friction will approximate the real friction
when network weighting approaches the optimal ones, i.e. the cost
function reaches a small pre-designated value.

Fig. 5 Learning architecture for the LuGre MBNN friction
compensator
In this study, we define the cost function as
E=—l(v” —yy :lez (25)
2 2

Then, the partial differential equations of cost function with
weightings and biases are

ol _dkdedv ou OIf, 8B_m3 aSn 9B _nl oy _nl (26)
LW, Qc ovoudlf,0B_n3 aSn OB_nldv_m oLW1,
=-¢-v_n3-p_nl-Sl,
o _0dcdv ou OIf, 0B _n3 dSn 0B_nldy nl 27)
oW1, B ovoudlf,dB_n3 aSn oB_nl dy_nl oW1,
==¢-y_n3-p_nl- LW -Sl,-u_nl,
gL 0k dedv ou OUf, 9B_n3 0Sn 0B _nl dv_nl (28)

oho _nl " e Ov dn alf, @B _n3 0Sn 3B _m dy _nl dho _nl

=—¢-y_n3-p_nt

o, _0lidedv on olf, oB_n3 aSn 9B _nl dv_nl (29)
ohi sl Be dv au DI, OB_n3 0Sn OB _nl Ov _nl dho_nl
=—cy_m-p_nl-LWL, S,
ok 0k dedv ou OIf, 9B _md_aSn 2B_n2 &y _n2 (30)
ALW?2,  Oc Ovoudlf, OB_n3 0OSn OB _n2dv_n2oLW2,
=-c-y_n3-p_n2-52,
ol _dkdeov ou Olf, 8B_n3 8Sn OB_n2dy _n? (€1))
oIW?2, Qe dvoudlf 8B_n3 aSn OB_n2 dy_n2 0IW2,
=—c.y_m-p_n2-LW2,-82,.u_n2,
ok _ardedv ou O, dB_n3 asn_oB_n2 oy _m (32)
dbo_n2 e Ovoudlf, OB _n3 asn 8B _n2 dy_n2 dbo_n2
=—¢-y_Hn3-p_n2
o _dkdedy ou OIf, B _n3_oSn B w2 dy_n2 (33)
Obi,_n2 3¢ dvoudlf, OB _n3 0Sn OB _n2 dy _n2 0bi, _n2
——cy_m3-p_n2-1W2,-52,
oL =ﬂz@i o0lf, oB_n3 dy_n3 (34)
oLW3, Ocovoudlf, 0B_n3dy_n3 0LW3,
=~¢-p_n3-S3,;
oL _ OL Oe dv du olf, oB_n3dy_n3 (35)
OIW3, @c 0vdudlf, 0B_n3 doy_n3 olW3,
=—c-p_n3-LW3,-S3;-u_n3,
O___ardedv ou Olf, 0B _nd oy _m (36)
dho_n3 e dv ou dlf, OB _n3 dy_n3 0bo_n3
=—¢-p_n3
or olZ 0e v du oTf, 8B_n3 dy_n3 37

ahi,_n3  de ovou dlf, 0B _n3 oy_n3 obi, _n3

=~c-p_n3-LW3, -S3,
We define the generalized weighting as w, then the optimal weighting
will be obtained by the back propagation method'®
w(k+1)=w(k)-1-V, E(k) (38)
where 5 is coefficient of learning speed and v _£(k) is the gradient
of cost function.

3.4 Control procedures for the LuGre MBNN friction

compensator

After several training epochs are applied in each region, the
optimal neural network weightings can be obtained as the cost
function reaches a small pre-designated value. Then, the LuGre
MBRNN friction compensator is applied to the motion system and
the control architecture is shown in Fig. 6. Furthermore, in order to
avoid the bouncing effect on the response, the compensated friction
T, is designed as follows to make smooth transition in the control

effort:

7, if ¢<t,
‘ . . (39)
T,=\1=-r)-T, +r-T, if ¢, <t<t,
T if t, <t
-1,
r=—mo> (40)
L
where ¢ and ¢, are the switching times, T, and T, are the

estimated frictions individually from the optimal neural network
weightings in motion start region and in velocity reversal region,
r:0<r<1 is the switching parameter between time t St<t,- The ¢,

should be chosen after the moving stage leaves the Stribeck region
while the choice of ¢, is not very critical and dependent on the

practical applicaions since Tt =T, (1) theoretically.

Fig. 6

LuGre MBNN friction compensator
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4. Experimental Results

A linear motor feed drive servomechanism, shown in Fig. 1, is
used to test the friction compensation performance of our proposed
compensator. The LuGre friction dynamic model is learned to match
different friction phenomena in both the motion-start region and the
motion-reverse region.

In the LuGre MBNN structure, shown in Fig. 4, the neurons of
hidden layer forgnn s, and¢”” are chosen as ten and the neural

activated function is chosen as

ol l-et

o 41
S1,=82,=83,= 41)

cl+e ™
Then, the following experiments with parameters in Table 1 are

performed.

4.1 Training experiments for motion-start region

To enhance the understanding of the friction phenomena in
motion-start region, we need to design a set of velocity command to
train the weightings of neural network. The command is designed as

y=a(l-e™), (42)

where a is between 25 to 40 mm/s, m is between 2 t0 9 sec™'. One
typical training command is shown in Fig. 7 with a=40 mm/s, m=4
sec™. As illustrated in Fig. 8, the weighting updating stops when
the cost function E is smaller than 0.01 (s, /5)? over 1600 epoches
of the step velocity command.

o
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Fig. 7 One typical training command in motion start region
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Fig. 8 Cost function vs. epoch during learning process in motion
start region

4.2 Training experiments for motion-reverse region

We design a set of velocity command to help us look into the
friction phenomena in the motion-reverse region. The sinusoid
signals, with frequency form 0.5 Hz to 5 Hz and amplitude from 30
mm/s to 40 mm/s, will be the suitable velocity commands because
they cover the bandwidth of the system and can fully capture the
reverse motion. Fig. 9 describes one typical sinusoidal command
with 40 mm/s amplitude. Fig. 10 shows the experiment results of
cost function. The weighting updating stops when the cost function
E is smaller than 0.02 (mm/s)> over 1400 epoches of the velocity

command.

Fig. 9 One typical training command in motion reverse region
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Fig. 10 Cost function vs. epoch during learning process in motion
reverse region

4.3 Experiments for a complete sinusoidal command
A sinusoidal velocity command 405in(7rz) mm/s is fed to the

servo loop to verify the compensation performance based on the
combined estimated friction from above trained neural network for
motion start region and reverse region. The encoder resolution used
in this case is 0.0791(um). The sample rate for the controller is 2
kHz, and velocity controller bandwidth is designed as ¢ =5Hz -

Additionally, the switching times in (39) are set as  =0.4sec and
t, = 0.6sec - The performance comparisons between the proposed

method and without friction compensation are presented by two
performance indices. The first index is the maximum tracking error
at three regions, the motion start region and two velocity reverse
regions, is defined as

(43)

Enm‘( = m(ax|xl' ‘xl
The second index indicating the root mean square tracking error at
these three regions is defined as

/l 2,
Erm.\' - ﬁ;(xr —'x)

Fig. 11 shows the experimental results. In Fig. 11(a), the command
and responses of two control systems (with compensation and without
compensation) coincide due to the scale used in the ordinate. Fig.
11(b)~Fig. 11(d) illustrate the detail responses at motion start region
and motion reverse region. The maximum tracking error and the
root mean square tracking error for this case are shown in Table 2 and
Table 3, respectively. In motion start region, the maximum tracking
error with friction compensation is reduced over 34% and the mean
square error is reduced over 53%. In both velocity reverse regions,
the two indices are reduced over 48% and 79%, respectively for the
first reversal, and over 55% and 90%, respectively for the second
reversal. The estimated friction is illustrated in Fig. 12, where the
Stribeck effect is captured in the motion start region and then the
estimated friction is decreased to Coulomb friction force.
Furthermore, there is no Stribeck effect as the motion experiences the
velocity reversal region.

(44
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Fig. 11 (a) Velocity command (Dotted Line, 40sin(x¢) mm/s),

velocity response with friction compensation (Solid line), and
velocity response without friction compensation (Dashed line) in all
trajectory, (b) in motion start region, (c) in the first motion reverse
region, and (d) in the second motion reverse region
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Fig.12 The estimated friction

Table 2 Maximum tracking error index for the velocity command,
40sin(z 1) mm/s

e it el
i

Fig. 14 Velocity command (Dotted Line, 705in(27rt) mm/s), velocity

response with friction compensation (Solid line), and velocity
response without friction compensation (Dashed line) in motion
reverse region

Table 4 Two indices for the velocity command, 40sin(0.4n' t) mmy/s,
in the motion start region

Without With Friction .
. . Error Reduction
compensation| compensation
Emax_l Emax_z (Enm\ 17 Emu\ z)%

(mm/s) (mm/s) max_1
Motion Start 6.98 4.55 34.87
Ist Reversal 2.44 1.25 48.67
2nd Reversal 2.07 0.91 55.82

Table 3 Root mean square tracking error index for the velocity
command, 4OSin(7rt) mm/s

Without With Friction .
. . Error Reduction
compensation | compensation
Erm,s_l Erm.\'_l (Em-:,l —Erm.l)%

(mm/s) (mm/s) £ s
Motion Start 8.98 4,16 53.71
1st Reversal 1.66 0.35 79.11
2nd Reversal 1.08 0.10 90.90

In addition, two other experimental results are given. One is with
a lower frequency velocity command 40sin(0.47¢) mm/s and the

other with a higher frequency command 7Osin(27rt) mm/s. The first

velocity command and velocity responses (with and without friction
compensation) in the motion start region are shown in Fig. 13. The
maximum tracking error and the root mean square tracking error for
this case are shown in Table 4, which indicates that the maximum
tracking error with friction compensation is reduced over 54% and the
mean square error is reduced over 75%. On the other hand, the
second velocity command and velocity responses (with and without
friction compensation) in the motion reverse region are shown in Fig.
14. The maximum tracking error and the root mean square tracking
error for this case are shown in Table 5, which indicates that the
maximum tracking error with friction compensation is reduced over
65% and the mean square error is reduced over 88%.

T T T T T T T
i 1 | ( ' 1 |
L e e e B B e et el i sl e
I 1 -
I

1 ! ) [ |."‘ !
P L e N T L
1 | 1 ) 7 i
e L __b__1__ 1 sy UL T B A
i [ [ [ FIE
1 1 1 VAR A
) SR L S5,
r T T r-au
] 1 1 (I 4 !
B T A ¥ A T
. oy
J | L//{ I
°

o.08

Fig. 13
velocity response with friction compensation (Solid line), and
velocity response without friction compensation (Dashed line) in
motion start region

Velocity command (Dotted Line, 405in(0.47rt) mm/s),

Without With Friction Error
compensation | compensation | Reduction
E, E, (15, ~E, ) E,
%
E, (mmis)| 461 2.09 54.64
E,(mmis)| 286 0.69 75.54

Table 5 Two indices for the velocity command, 70sin(27r ;) mm/s, in
the motion start region

Without With Friction Error
compensation | compensation | Reduction
E, E, (B, -E)E, %
E"m(mm/s) 3.82 1.31 65.75
E_(mmls) 447 0.53 88.05

ms

5. Conclusion

In this paper, a linear-motor-driven motion system is under study
because of the advantages of its simple structure and absence of
flexible coupling. The proposed LuGre model-based neural network
is designed to be utilized in both the motion-start region and the
motion-reverse region for estimating and compensating the friction in
a linear motor stage. Comparing the performance without friction
compensation, we found the compensation performance of the LuGre
MBNN gains advantage in both the motion-start region and the
motion reverse region. Finally, the proposed compensator is
evaluated and compared experimentally with an uncompensated
system on a microcomputer controlled linear motor positioning
system. The experimental results show that the velocity error
occurrences in the motion-start region and the motion-reverse region
are drastically improved.
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