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Analysis of structures which are composed of numerous repeated unit structures can be simplified by using
homogenized properties. If the unit structure is repeated in one direction, the whole structure may be regarded as
a beam. Once the effective stiffuess is obtained from the analysis of the unit structure in a proper way, the effort for
the detail modeling of the global structure is not required, and the real structure can be replaced simply with a
beam. This study proposes a kinematical periodicity constraint to be imposed on the FE model of the unit
structure, which improves the accuracy of the effective stiffness. The method is employed to a one dimensionally
arrayed 3D structure containing periodically repeated unsymmetrical holes. It is demonstrated that the
deformation behavior of the homogenized beam agrees well with that of the real structure.

1. Introduction

The periodically repeated structures are widely used in a variety
of engineering applications, whether their representative volume
elements are in microscopic or macroscopic levels. The detailed
modeling of such structures is usually impractical due to the
innumerable constituent elements. Instead, the domains are often
simplified into homogeneous solids with homogenized effective
properties.

The homogenized properties are evaluated through the analysis of
the unit cell, but the mathematical difficulties caused by the geometric
complexity and nonlinear behavior of material make the numerical
approach more preferable. A number of studies concerning the
homogenization of solids have been reported. Among many others,
Anthoine' and Chung™ noticed that the distribution of strain is
periodic under the uniform stress field, and proposed to impose a
certain constraint on the boundary faces of the unit cell model to
realize the periodicity. In their studies, only a single cell was analyzed
to yield accurate effective properties.

The macroscopic beams composed of repeated unit cell structures
also need the proper homogenization technique. Pala and Ozmen®
used the effective stiffiess concept in the analysis for the design of an
earthquake-resistant structure. Anthoine et al.” evaluated the effective
properties of steel reinforced three dimensional concrete beam with
progressive damage. Burgardt and Catraud® defined a unit cell for a
truss structure, and derived its effective stiffness. Chung9 derived the
periodicity constraint equations for a beam-in-plane and showed that
the resulting effective properties were good enough to predict the
global behavior of in-homogeneous beams.

Unlike two or three dimensional solids, in which all the faces are
surrounded by adjacent cells, the unit cells for beam problems are
connected to the global structure through only two faces along the

longitudinal direction of the beam, while the others are free. In
addition, the uniform stress field needs to be replaced with the
uniform section load field for the characterization of beams. These are
the main reasons for the need of the distinct homogenization strategy
from the two or three dimensional solid case. In this study, periodicity
constraint equations for beams-in-space are proposed. These can be
imposed on the finite element models for beams constructed of three
dimensional unit structures arrayed in one direction.

For the validation purpose of the proposed method, a beam-in-
space containing periodically spaced unsymmetrical voids is analyzed.
The evaluated effective stiffness properties are employed to predict
the deflection of a cantilever beam. The results are compared with the
deformation behavior of the one modeled in detail.

2. Periodicity Constraints for Beams-in-Space

2.1 Behavior of Beams in Space

The structural properties of beams-in-space can be described by
the stiffness or flexibility matrices against axial and flexural loads or
deformations as Eq. (1).
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Here. &, and « are the extensional strain and curvature, and /~ and A/
are the axia' Goad end the bending moment. respectively. The
reference coordinate rame and the directions ot the section loads and
the displacements are shown in Fig. 1. In case the internal structure of
the beam is unsymmetrical with respect to xy and yz planes, the
coupling effects between extension and bending or bending in y and z
directions result in nonzero off-diagonal terms in the stiffness and
flexibility matrices.

2.2 Periodicity Constraints

The effective stiffness and flexibility of beam, C;; and S, can be
evaluated from the behavior of the unit cell under the uniform section
loads, which is equivalent to the uniform stress field for in-plane or
three dimensional solids. If the cells are under the uniform section
loads, the strain fields are repeated with the same interval as the axial

length of the cell, and therefore, Eq. (2) holds.
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The subscripts 4 and B in the equation imply the corresponding
material points with the same location within the adjacent unit cells as
shown in Fig. 2. They have identical x and z coordinates, but different
x coordinate by the length of the cell.

Subtraction of the x derivative of Eq. (2b) from the y derivative of
Eq. (2d) gives Eq. (3a), and in a similar manner, Eq. (3b) can be
derived from Eq. (2¢) and (21).
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It is easily noted that the difference in u’s of the corresponding node
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Fig. 1 Sign conventions for displacements and section loads
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Fig.2 A unit codl with corresponding points and reference points

pair needs to be in the form of Eq. (4) in order to satisfy Eq. (3).
Uy y—Ug =CVZ+C}+ 040y 4

Anthoine et al.” assumed the linear distribution in y and z, i.e. ¢,=0.
However, it is true only when the internal structure of the beam is
symmetric with respect to xy and xz planes. For arbitrarily chosen
four reference point pairs in Fig. 2, Eq. (4) could be rewritten as Eq.
(5). The reason for selecting four pairs is that Eq. (4) contains four
unknown coefficients.
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Similarly, the differentiation and combination of Eq. (2a) and Eq.
(2d) yield Eq. (6a), and also Eq. (6b) can be obtained from Eq. (2a)
and Eq. (2f). The resulting equations imply that the corresponding
point pairs have identical curvatures under the uniform section load

condition.
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Subtraction of the z derivative of Eq. (2¢) from the y derivative of
Eq. (2¢) gives Eq. (7), from which Eq. (8) is derived subsequently.
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The coefficients in the equation can be evaluated in terms of the
positions and displacements of the reference points (L,3), (R,3), (L,4),
and (R,4) in Fig. 2 to obtain Eq. (9).
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Following the similar procedure as the above, the difference in
w’s between the corresponding points can be described as Eq. (10) by
using the positions and displacements of the reference points (L,1),
(R,1), (L,2), and (R,2) in Fig. 2.
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The set of equations (5), (9) and (10) completes the periodicity
constraints to be imposed on the nodes on the faces shared by the
adjacent unit cells. With the help of these constraints on the FE model,
the strain components are guaranteed to be periodic.

As the number of the FE nodes to be constrained grows, it may be
time consuming to implement all the equations into the analysis data
file. In this study, a short FORTRAN program has been coded so that
the corresponding nodes are identified from the unit cell model data
and the proper constraint equations are generated automatically
according to the input file format for the FE solver.

3. Effective Stiffness of Beam

3.1 Unit Cell Model
As a verification example of the homogenization technique in the
former section, a beam with periodically arrayed voids has been
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Fig.3 Geometry and FE model of a unit cell
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Fig. 4 Boundary conditions to evaluate effective stiffness from
analysis of a unit cell: (a) & (d) extension, (b) & (€) bending in y-
dir., (¢) & (d) bending in z-dir (Periodicity constraint imposed in
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analyzed. The shape and FE model of the unit cell are illustrated in
Fig. 3. Due to the geometry of the voids, the internal structure of the
cell is not symmetrical with any of the xy, yz and zx planes. All the
edge lengths were 1. The cell model was subdivided into 680 brick
elements, and the number of the nodes was 3988. On each of the
constrained boundary faces, 341 nodes were located. Among them,
the corner and mid-edge nodes were selected to be the reference
points. The elastic modulus and Poisson’s ratio were 1 and 0.25,
respectively.

3.2 Effective Stiffness

The simplest method of homogenization is to apply a uniform
stress on the boundary of a unit cell and to evaluate the average
deformation, or to apply a uniform displacement and to evaluate the
average stress. The approximate stiffness or flexibility could be
obtained from the structural response from the analysis. In the case of
a beam, uniform axial deformation or rotation may be applied as
shown in Fig. 4(a-c). The reaction forces on the boundary nodes are
summed up to evaluate the axial force F, and the bending moments
M, and M.. Then, the stiffness matrix in Eq. (1a) can be computed.
This method, however, is based on an over-simplified displacement
field without taking the periodic behavior into account, and the
effective properties, in consequence, can not avoid errors to a certain
degree.

On the other hand, all the nodes on the boundary faces are
constrained in the present study, in a way that the periodic behavior is
maintained. Only the selected reference nodes are displaced so that a
desired extension or bending is approximated, as shown in Fig 4(d-f).

Reaction forces were calculated trom the unit cell shown in Fig. 3,
under each of the deformation condition given in Fig. 4(d-f). The
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Fig.5 Comparison of flexibility matrix components from uniform
displacement and rotation boundary conditions with those from a
single cell analysis with periodicity constraints

stiffness matrix in Eq. (1a) was evaluated and inverted to obtain the
flexibility matrix in Eq. (1b) as Eq. (11).

27901 37166 14838
[s,]=|3.7164 327742 —1.8827 (n
14838 -1.8823 192384

Numerical errors are observed, but the flexibility matrix is very close
to being symmetric. Also, none of the off-diagonal terms are null due
to the aforementioned coupling effects.

The flexibility components computed from the conditions in Fig.
4 (a-c) without the periodicity constraints were compared with those
in Eq. (11), and are shown in Fig. 5. Using a single unit cell, the
differences of S;;, Siz, Si3, S22, Sa3, S33 from the periodicity solution
are 2.68%, 2.50%, 3.59%, 3.65%, 23.45% and 2.04%, respectively.
As the number of cells is increased, the difference is reduced.
However, even 31 cell model employing 21080 elements stiil carry
some errors. The cause of the difference is in the over-simplified
boundary conditions. The boundary faces do not remain plane after
the deformation in reality. As more cells are appended in the model,
the inside cells deform in the periodic manner, and therefore, the
influence of the wrong boundary conditions diminishes relatively.

The above difference is highly dependent on the in-homogeneities
included, and may get worse than the example case in this study. For
an in-plane problem with square arrayed circular holes, Meguid et
al.'®, in their asymptotic homogenization study, showed that the error
grows as the void ratio increases. It is because the edges of the cell
are distorted severely as the hole grows. Also in the case of a beam,
the error would grow as the deformed boundary faces of the cell
depart from a plane.

Deformed shapes and the distributions of von Mises stress of the
unit cell in Fig. 3 are shown in Fig. 6. The loading condition was the
bending in v direction. Single cell results without and with periodicity
constraints are compared in Fig. 6(a) and Fig. 6(b). The dissimilarities
between them are obvious. Fig. 6(c) is the result from a mid-cell of 31
cell model without periodicity constraints. Because it is very far from
the uniformly rotated cell faces, the deformation behavior is expected
to be close to the periodic one. A very close similarity to Fig. 6(b) is
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Fig.6 Deformed shape and distribution of von Mises stress under
bending in y-dir.: (a) single cell under uniform rotation, (b) single
cell with periodicity constraint, (c) mid-cell of 31 cell model

observed.

4. Deflection Analysis of Beam with Effective Flexibility

Employing the effective properties of the beam in the previous
section, the deflection analysis of a cantilever beam composed of 31
cells was attempted. Its left end was clamped, while the other end was
loaded by an axial force P,, shear forces P, and P, and concentrated
moments M, and M. From Eq. (lb), the displacement of beam
sections are derived as follows.

S),P. = S,5P
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The length of the beam, designated as /, was 31, and x is the
distance of a section from the fixed end. Normalized displacements of
the beam sections are illustrated in Fig. 7, for each load components.
They were normalized by the displacements at the loaded end. The
symbols in Fig. 7 are for the detailed model analysis results. In the
model, all the voids were modeled as they were. The displacements of
a center node on each section were normalized by the above beam
solutions at the loaded end.

For all the loading conditions and most of the span-wise locations,
the theoretical prediction using the effective properties is in very good
agreement with the detailed FE analysis. One thing to note from Fig.
7(a), though, is that the difference in displacement increases at the
loaded end under P,. This is due to the localized severe deformation
induced by a concentrated force. The degree of this type of
discrepancy depends on the internal structure around the loading
point. This would be an inherent weakness of homogenization itself.
However, the homogenization technique including the present study
still does not lose its practical importance, considering that structural
designers try to avoid concentration of force and resulting stresses. If
the concentration is the real case, only the loaded part may be
modcled in dctail and combined with the homogenized model for the
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Fig.7 Displacements normalized by those at the free end of 31 cell
cantilever beam subject to end loads

remainder.

5. Conclusions

A method to evaluate the homogenized structural properties has
been studied for three dimensional beams which are constructed by
repeating a representative unit structure in one direction.

Under a uniform section load, the resulting strain fields are
periodically repeated. Based on this fact, periodicity constraint
equations have been derived. All the nodes on the faces shared by
adjacent unit cells are required to satisfy them. Imposing the
constraints is time consuming especially when the unit cell is
subdivided into a number of elements, but this was avoidable by
coding a short program.

Uniform stress, strain or rotation boundary condition is often
employed in many homogenization works, with no discretion on the
periodic and localized behavior of the real structures. They can be
imposed very easily on FE models, but the accuracy is lost as a
consequence. The error can be reduced by modeling a larger domain
with a larger number of cells. A good alternative for this is to use the
periodicity constraints. Only a single cell was found to be enough to
yield accurate effective properties of three dimensional beams-in-
space.

The effective stiffness and flexibility components have been
computed for a beam including unsymmetrical voids, which were
periodically arrayed in the beam axis direction. Using the computed
effective properties, a cantilever beam was analyzed. Agreement with
the deformation behavior from the detailed FE model analysis was
excellent, which validates the present method.

Strictly speaking, the periodicity assumption of section load does
not hold true in beams if the sectional shear load exists. 1t is because
uniform shear force field translates directly into non-uniform bending
moment distribution. Therefore, it is thought that the present method
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does not guarantee the accuracy for the shear flexible beams.
flowever. this is still a very effective method for Euler-Bernouilli
seanis, aivd even for beans with acertain degiee o shicar flexibilivy
such as the example case of this study.
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