Synthesis and characterizations of the non-swelling property micas by hydrothermal method

비팽윤성 운모의 수열합성 및 특성평가

  • 박춘원 (동신대학교 보석공학과) ;
  • 박선민 (요업기술원 공정기술팀) ;
  • Published : 2006.06.30

Abstract

Synthesis of the non-swelling property micas was carried out by hydrothermal method. In order to artificially induce the diffusion of ions, a rotating system was attached to the hydrothermal apparatus and by adding 0.7 mm zircon beads, synthesis of the non-swelling property micas could be performed in a low temperature area. The hydrothermal conditions for the preparation of micas were a reaction temperature of $260^{\circ}C$, for 72 hrs, using $1K_2O,\;1Al(OH)_3,\;4Mg(OH)_2\;and\;6SiO_2$ as the starting materials and a 8M-KOH solution as the hydrothermal solvent. The micas obtained under these conditions were a plate shape with a size of $2.89{\mu}m$ and showed a whiteness of over 97 %. Also, through the FT-IR analysis, because the absorption peak of the $Mg_3OH$ vibration was observed at approximately $3700cm^{-1}$, it could be known that it was phlogopite of non-swelling property showing the chemical composition of $KMg_3AlSi_3O_{10}(OH)_2$. This result was very consistent with the EDS analysis where O (41.34 %), Mg (3.88 %), Al (11.45 %), Si (17.62 %) and K (25.71%) elements were detected.

수열법을 이용하여 비팽윤성 운모의 합성을 행하였다. 인위적인 이온의 확산을 유도시키기 위하여 수열참치에 회전장치를 부착하고 0.7mm 크기의 지르콘 비드를 첨가시킴으로써 저온영역에서 비팽윤성 운모를 합성할 수 있었다. 비팽윤성 운모를 제조하기 위한 수열조건은 다음과 같다. 즉, 출발원료: $1K_2O,\;1Al(OH)_3,\;4Mg(OH)_2$$6SiO_2$, 수열용매: 8M-KOH, 반응온도: $260^{\circ}C$, 반응시간 72시간이었다. 이와 같은 조건에서 얻어진 운모는 $2.89{\mu}m$ 크기의 판상형 이었으며 97% 이상의 백색도를 나타내었다. 그리고 $3700cm^{-1}$ 부근에서 $Mg_3OH$ 진동에 의한 흡수피크를 나타내었기 때문에 $KMg_3AlSi_3O_{10}(OH)_2$의 화학조성을 나타내는 비팽윤성의 금운모임을 FT-IR분석을 통하여 알 수 있었다. 이 결과는 O (41.34%), Mg (3.88%) Al (11.45%), Si (17.62%) 및 K (25.71%)의 원소가 검출된 EDS 분석결과와 잘 일치하였다.

Keywords

References

  1. M.Y. Zolotov, B. Fegley and K. Lodders, 'Stability of micas on the surface of Venus', Planet. Space Sci. 47 (1999) 245 https://doi.org/10.1016/S0032-0633(98)00079-8
  2. H. Tateyama, S. Nishimura, K. Tsunematsu and M. Kimura, 'Synthesis of expandable fluorine mica from talc', Clays Clay Miner. 40 (1992) 180 https://doi.org/10.1346/CCMN.1992.0400207
  3. S. Komarneni and B.L. Newalkar, 'Low-temperature synthesis of micas under conventional and microwave hydrothermal conditions', Clays Clay Miner. 51 (2003) 693 https://doi.org/10.1346/CMN.203.0510612
  4. H.S. Yoder and H.P. Eugster; 'Synthetic and natural muscovites', Geochim. Cosmochim. Acta 8 (1955) 225 https://doi.org/10.1016/0016-7037(55)90001-6
  5. A. Bos, J.H.L. Voncken and L.M. Geert Jan, 'Hydrothermal synthesis of ammonium phlogopite', Geol. Mijnbouw 66 (1987) 251
  6. J.K. Choi, W.I. Hwang and P.C. Kim, 'Hydrothermal synthesis of (Li, AI) $MnO_{2}(OH)_{2}$ : Co compound', J. Korean Crystal Growth and Crystal Tech. 11 (2001) 154
  7. J. Tan, L. Shen, X. Fu, W. Hou and X. Chen, 'Preparation and conductive mechanism of mica titania conductive pigment', Dyes Pigments 62 (2004) 107 https://doi.org/10.1016/j.dyepig.2003.08.001