Fabrication and sintering of nano $TiN_x$ and its composites

Nano $TiN_x$와 그 복합체의 제조 및 소결

  • Kim, Dong-Sik (Department of Information and Nano Materials, Kumoh National Institute of Technology) ;
  • Kim, Sung-Jin (Department of Information and Nano Materials, Kumoh National Institute of Technology) ;
  • Rahno, Khamidova (Department of Information and Nano Materials, Kumoh National Institute of Technology) ;
  • Park, Sung-Bum (Department of Information and Nano Materials, Kumoh National Institute of Technology) ;
  • Park, Seung-Sik (Department of Information and Nano Materials, Kumoh National Institute of Technology) ;
  • Lee, Hye-Jeong (Department of Information and Nano Materials, Kumoh National Institute of Technology) ;
  • Lee, Sang-Woo (Department of Information and Nano Materials, Kumoh National Institute of Technology) ;
  • Cho, Kyeong-Sik (Department of Information and Nano Materials, Kumoh National Institute of Technology) ;
  • Woo, Heung-Sik (Department of Safety Engineering, DongEuk University) ;
  • Ahn, Joong-Ho (Advenced Materials Engineering, Andong National University)
  • 김동식 (금오공과대학교 정보나노소재공학) ;
  • 김성진 (금오공과대학교 정보나노소재공학) ;
  • 라노 (금오공과대학교 정보나노소재공학) ;
  • 박성범 (금오공과대학교 정보나노소재공학) ;
  • 박승식 (금오공과대학교 정보나노소재공학) ;
  • 이혜정 (금오공과대학교 정보나노소재공학) ;
  • 이상우 (금오공과대학교 정보나노소재공학) ;
  • 조경식 (금오공과대학교 정보나노소재공학) ;
  • 우흥식 (동국대학교 안전공학과) ;
  • 안중호 (안동대학교 신소재공학과)
  • Published : 2006.06.30

Abstract

We fabricated the nano $TiN_x$ by making of reaction between titanium powder and $Si_3N_4$ during planetary milling. The $TiN_x$ powder was sintered by spark plasma sintering machine after mixing with 50 wt% of titanium powder, and the sintered body was heat-treated at $850^{\circ}C$ in order to investigate its hardness property at the elevated temperature. We analyzed crystal structure by XRD. We observed the peaks of $TiN_{0.26}$ and TiN after 10 hours milling, and we observed TiN peak mainly after 20 hours milling. The reacted particle size distribution was investigated by FE-SEM. Increase of milling time, the size of reacted particles was decreased and the $10{\sim}20nm$ size of $TiN_x$ on the surface of titanium and $TiN_x$ was observed after 20 hours milling. The micro-Vickers hardness of mixed sintered body was about $1050kgf/mm^2$.

본 연구에서는 planetary milling을 사용하여 Ti 분말과 $Si_3N_4$와의 반응이 일어나도록 하여 nano $TiN_x$을 제조하였다. 이렇게 얻어진 분말은 Ti 분말과 혼합하여 SPS 소결 장치를 이용하여 소결하였으며 이 소결체의 고온에서의 경도변화를 조사하기위해 $850^{\circ}C$에서 열처리하였다. 분말의 물성평가는 X선 회절분석을 통해 결정상의 변화를 분석하였으며, 그 결과 milling 시간이 10시간의 milling에서는 $TiN_{0.26}$과 TiN이 혼재되어 있으며 20시간의 milling에서는 주로 TiN이 생성되는 것으로 확인되었다. 제조된 분말의 표면관찰을 통해서는 milling 시간이 증가할 수로 입자표면에 새로 형성된 반응물 size 분포를 조사하였으며, milling 시간이 길수록 입자표면의 $TiN_x$ 입자의 사이즈가 $10{\sim}20nm$ 정도로 작아지는 것을 알 수 있었다. Ti와 $TiN_x$를 중량비로 50:50로 혼합하여 제조한 소결체의 경도는 마이크로비커스 경도 값으로 $1050kgf/mm^2$ 정도를 나타내었다.

Keywords

References

  1. J.H. Lee, Y.S. Jang, H.C. Park and K.D. Oh, 'Preparation of fine titanium nitride powders from titanium trichloride', 27 (1990) 916
  2. J. Rivory, J.M. Behaghel, S. Berthier and J. Lafait, 'Optical properties of substoichiometric $TiN_{x}$', Thin Solid Films 78 (1981) 161 https://doi.org/10.1016/0040-6090(81)90615-5
  3. N.Y. Kim, Y.B. Son, J.H. Oh, C.K. Hwangbo and M.C. Park, '$TiN_{x}$ layer as an antireflection and antistatic coating for display', Surface and Coatings Technology 128 (2000) 156 https://doi.org/10.1016/S0257-8972(00)00574-0
  4. K. Aoki, A. Memezawa and T. Masumoto, 'Nitrogen induced amorphization of Ti-Zr powders during mechanical alloying', Appl. Phys. Lett. 61 (1992) 1037 https://doi.org/10.1063/1.107708
  5. A.H. Claure and J.J. de Barbadillp, Solid State Powder Processing 3-19 (TMS, 1990)
  6. J.S. Benjamin, 'Dispersion strenghened superalloys by mechanical alloying', Metall. Trans. 1 (1970) 2943
  7. G.B. Schaffer and P.G. McCormick, 'A nanocrystalline mixture of intermetallic compounds by mechanical alloying', Metall. Trans. A23 (1992) 1285
  8. J. Zbiral, a Jangg and G. Korb, 'Influences of heattreatments on the constitution and the recrystallization response of the Y'-strengthened ODS-Ni-base alloy PM 3030', Metall. Sci. Forum, Trans Tech. Publications, Zurich 88-90 (1992) 18
  9. J.S. Benjamin and MJ. Bamford, 'Dispersion strengthned aluminum made by mechanical alloying', Metall Trans. 8A (1977) 130l
  10. J.S. Benjamin and RD. Schelleng, 'Temperature alloys: theory design', Metall Trans. 12A (1981) 1827
  11. K. Sakurai, C.H. Lee, N. Kuroda, T. Fukunaga and U. Mizutani, 'Nitrogen effect in mechanical alloying of immiscible Cu-V : extended X-ray absorption fine structure study', J. Appl. Phys. 75 (1994) 7752 https://doi.org/10.1063/1.356607
  12. Y. Ogino, S. Murayama and T. Yamasaki, 'Influence of milling atmosphere on amorphization of chromium and Cr-Cu powders by ball milling', J. Less-Common Metals 168 (1991) 221 https://doi.org/10.1016/0022-5088(91)90304-M
  13. C.H. Lee, M. Mori, Fukunaga and U. Mizutani, 'Structural evidence for the amorphization of mechanically alloyed Cu-Ta powders studied by neutron diffraction and EXAFS', Mat. Sci. Forum 88 (1992) 399
  14. SJ. Kim, D.S. Kim, R. Khamidova, S.B. Park, W.I. Gwon, M.H. Kim, H.S. Woo, J.H. Ahn, 'Fabrication of TiN by planetary milling', Journal of the Korean Crystal Growth and Crystal Technology 15 (2005) 104