Artemisolide from Artemisia asiatica: Nuclear $Factor-{\kappa}B\;(NF-{\kappa}B)$ Inhibitor Suppressing Prostaglandin $E_2$ and Nitric Oxide Production in Macrophages

  • Reddy, Alavala Matta (College of Pharmacy & Research Center for Bioresource and Health, Chungbuk National University) ;
  • Lee, Jun-Young (College of Pharmacy & Research Center for Bioresource and Health, Chungbuk National University) ;
  • Seo, Jee-Hee (Korea Research Institute of Chemical Technology) ;
  • Kim, Byung-Hak (College of Pharmacy & Research Center for Bioresource and Health, Chungbuk National University) ;
  • Chung, Eun-Yong (College of Pharmacy & Research Center for Bioresource and Health, Chungbuk National University) ;
  • Ryu, Shi-Yong (Korea Research Institute of Chemical Technology) ;
  • Kim, Young-Sup (Korea Research Institute of Chemical Technology) ;
  • Lee, Chong-Kil (College of Pharmacy & Research Center for Bioresource and Health, Chungbuk National University) ;
  • Min, Kyung-Rak (College of Pharmacy & Research Center for Bioresource and Health, Chungbuk National University) ;
  • Kim, Young-Soo (College of Pharmacy & Research Center for Bioresource and Health, Chungbuk National University)
  • Published : 2006.07.01

Abstract

Aerial parts of Artemisia asiatica (Compositae) have been traditionally used as an oriental medicine for the treatment of inflammatory and ulcerogenic diseases. In the present study, artemisolide was isolated as a nuclear factor $(NF)-{\kappa}B$ inhibitor from A. asiatica by activity-guided fractionation. Artemisolide inhibited $NF-{\kappa}B$ transcriptional activity in lipopolysaccharide (LPS)-stimulated macrophages RAW 264.7 with an $IC_{50}$ value of $5.8\;{\mu}M$. The compound was also effective in blocking $NF-{\kappa}B$ transcriptional activities elicited by the expression vector encoding the $NF-{\kappa}B$ p65 or p50 subunits bypassing the inhibitory kB degradation signaling $NF-{\kappa}B$ activation. The macrophages markedly increased their $PGE_2$ and NO production upon exposure to LPS alone. Artemisolide inhibited LPS-induced $PGE_2$ and NO production with $IC_{50}$ values of $8.7\;{\mu}M$ and $6.4\;{\mu}M$, respectively, but also suppressed LPS-induced synthesis of cyclooxygenase (COX)-2 or inducible NO synthase (iNOS). Taken together, artemisolide is a $NF-{\kappa}B$ inhibitor that attenuates LPS-induced production of $PGE_2$ or NO via down-regulation of COX-2 or iNOS expression in macrophages RAW 264.7. Therefore, artemisolide could represent and provide the anti-inflammatory principle associated with the traditional medicine, A. asiatica.

Keywords

References

  1. Akira, S., Toll-like receptors and innate immunity. Adv. Immunol., 78, 1-56 (2001) https://doi.org/10.1016/S0065-2776(01)78001-7
  2. Archer, S., Measurement of nitric oxide in biological models. FASEB J., 7, 349-360 (1993) https://doi.org/10.1096/fasebj.7.2.8440411
  3. Baeuerle, P. A. and Baltimore, D., NF-${\kappa}$B: ten years after. Cell, 87, 13-20 (1996) https://doi.org/10.1016/S0092-8674(00)81318-5
  4. Beg, A. A., Ruben, S. M., Scheinman, R. I., Haskill, S., Rosen, C. A., and Baldwin, A. S. Jr., I${\kappa}$B interacts with the nuclear localization sequences of the subunits of NF-${\kappa}$B: a mechanism for cytoplasmic retention. Genes Dev., 6, 1899- 1913 (1992) https://doi.org/10.1101/gad.6.10.1899
  5. Blantz, R. C. and Munger, K., Role of nitric oxide in inflammatory conditions. Nephron, 90, 373-378 (2002) https://doi.org/10.1159/000054723
  6. Foglio, M. A., Dias, P. C., Antonio, M. A., Possenti, A., Rodrigues, R. A., da Silva, E. F., Rehder, V. L., and de Carvalho, J. E., Antiulcerogenic activity of some sesquiterpene lactones isolated from Artemisia annua. Planta Med., 68, 515-518 (2002) https://doi.org/10.1055/s-2002-32570
  7. Garcia-Pineres, A. J., Castro, V., Mora, G., Schmidt, T. J., Strunck, E., Pahl, H. L., and Merfort, I., Cysteine 38 in p65/ NF-${\kappa}$B plays a crucial role in DNA binding inhibition by sesquiterpene lactones. J. Biol. Chem., 276, 39713-39720 (2001) https://doi.org/10.1074/jbc.M101985200
  8. Garcia-Pineres, A. J., Lindenmeyer, M. T., and Merfort, I., Role of cysteine residues of p65/NF-${\kappa}$B on the inhibition by the sesquiterpene lactone parthenolide and N-ethyl maleimide, and on its transactivating potential. Life Sci., 75, 841-856 (2004) https://doi.org/10.1016/j.lfs.2004.01.024
  9. Guha, M. and Mackman, N., LPS induction of gene expression in human monocytes. Cell. Signal., 13, 85-94 (2001) https://doi.org/10.1016/S0898-6568(00)00149-2
  10. Hehner, S. P., Hofmann, T. G., Droge, W., and Schmitz, M. L., The anti-inflammatory sesquiterpene lactone parthenolide inhibits NF-${\kappa}$B by targeting the IkB kinase complex. J. Immunol., 163, 5617-5623 (1999)
  11. Ignarro, L. J., Nitric oxide as a unique signaling molecule in the vascular system: a historical overview. J. Physiol. Pharmacol., 53, 503-514 (2002)
  12. Jin, H. Z., Lee, J. H., Lee, D., Hong, Y.S., Kim, Y. H., and Lee, J. J., Inhibitors of the LPS-induced NF-${\kappa}$B activation from Artemisia sylvatica. Phytochemistry, 65, 2247-2253 (2004) https://doi.org/10.1016/j.phytochem.2004.06.034
  13. Israel, A., The IKK complex: an integrator of all signals that activate NF-${\kappa}$B? Trends Cell Biol., 10, 129-133 (2000) https://doi.org/10.1016/S0962-8924(00)01729-3
  14. Kim, J. H., Kim, H. K., Jeon, S. B., Son, K. H., Kim, E. H., Kang, S. K., Sung, N. D., and Kwon, B. M., New sesquiterpenemonoterpene lactone, artemisolide, isolated from Artemisia argyi. Tetrahedron Lett., 43, 6205-6208 (2002) https://doi.org/10.1016/S0040-4039(02)01315-1
  15. Kim, S. H., Lee, S. D., Kim, W. B., Lee, M. G., and Kim, N. D., Determination of a new antiulcer agent, eupatilin, in rat plasma, bile, urine, and liver homogenate by highperformance liquid chromatography. Res. Commun. Mol. Pathol. Pharmacol., 97, 165-170 (1997)
  16. Koshihara, Y., Neichi, T., Murota, S., Lao, A., Fujimoto, Y., and Tatsuno, T., Selective inhibition of 5-lipoxygenase by natural compounds isolated from Chinese plants, Artemisia rubripes Nakai. FEBS Lett., 158, 41-44 (1983) https://doi.org/10.1016/0014-5793(83)80672-3
  17. MacMicking, J., Xie, Q. W., and Nathan, C., Nitric oxide and macrophage function. Ann. Rev. Immunol., 15, 323-350 (1997) https://doi.org/10.1146/annurev.immunol.15.1.323
  18. Magnani, M., Crinelli, R., Bianchi, M., and Antonelli, A., The ubiquitin-dependent proteolytic system and other potential targets for the modulation of nuclear factor-${\kappa}$B (NF-${\kappa}$B). Curr. Drug Targets., 1, 387-399 (2000) https://doi.org/10.2174/1389450003349056
  19. Moon, K. Y., Hahn, B.S., Lee, J., and Kim, Y. S., A cell-based assay system for monitoring NF-${\kappa}$B activity in human HaCat transfectant cells. Anal. Biochem., 292, 17-21 (2001) https://doi.org/10.1006/abio.2001.5059
  20. Needleman, P. and Isakson, P. C., The discovery and function of COX-2. J. Rheumatol., 49, 6-8 (1997)
  21. Prast, H. and Philippu, A., Nitric oxide as modulator of neuronal function. Prog. Neurobiol., 64, 51-68 (2001) https://doi.org/10.1016/S0301-0082(00)00044-7
  22. Reddy, A. M., Seo, J. H., Ryu, S. Y., Kim, Y. S., Min, K. R., and Kim, Y., Cinnamaldehyde and 2-methoxycinnamaldehyde as NF-${\kappa}$B inhibitors from Cinnamomum cassia. Planta Med., 70, 823-827 (2004) https://doi.org/10.1055/s-2004-827230
  23. Schmidt, T. J., Helenanolide-type sesquiterpene lactones. Rates and stereochemistry in the reaction of helenalin and related helenanolides with sulfhydryl containing biomolecules. Bioorg. Med. Chem., 15, 645-653 (1997)
  24. Seo, H.-J., Park, K.-K., Han, S. S., Chung, W.-Y., Son, M.-W., Kim, W.-B., and Surh, Y.-J., Inhibitory effects of the standardized extract (DA-9601) of Artemisia asiatica Nakai on phorbol ester-induced ornithine decarboxyase activity, papilloma formation, cyclooxygenase-2 expression, inducible nitric oxide synhtase expression and nuclear transcription factor kB activation in mouse skin. Int. J. Cancer, 100, 456-462 (2002) https://doi.org/10.1002/ijc.10489
  25. Tegeder, I., Pfeilschifter, J., and Geisslinger, G., Cyclooxygenaseindependent actions of cyclooxygenase inhibitors. FASEB J., 15, 2057-2072 (2001) https://doi.org/10.1096/fj.01-0390rev
  26. Tian, B. and Brasier, A. R., Identification of a nuclear factor kBdependent gene network. Recent Prog. Horm. Res., 58, 95- 130 (2003) https://doi.org/10.1210/rp.58.1.95
  27. Vane, J. R., Bakhle, Y. S., and Botting, R. M., Cyclooxygenases 1 and 2. Ann. Rev. Pharmacol. Toxicol., 38, 97-120 (1998) https://doi.org/10.1146/annurev.pharmtox.38.1.97
  28. Vane, J. R. and Botting, R. M., Anti-inflammatory drugs and their mechanism of action. Inflamm. Res., 47, S78-S87 (1998) https://doi.org/10.1007/s000110050284
  29. Stalinska, K., Guzdek, A., Rokicki, M., and Koj, A., Transcription factors as targets of the anti-inflammatory treatment: a cell culture study with extracts from some Mediterranean diet plants. J. Physiol. Pharmacol., 56, 157-169 (2005)