Effects of Methyl Gallate on Arachidonic Acid Metabolizing Enzymes: Cyclooxygenase-2 and 5-Lipoxygenase in Mouse Bone Marrow-Derived Mast Cells

  • Published : 2006.10.01

Abstract

Methyl gallate (MG) is a medicinal herbal product that is isolated from Paeonia lactiflora that inhibits cyclooxygenase-2 (COX-2) dependent phases of prostaglandin $D_2\;(PGD_2)$ generation in bone marrow-derived mast cells (BMMC) in a concentration-dependent manner with an $IC_{50}$ values of $17.0\;{\mu}M$. This compound also found inhibited the COX-2-dependent conversion of the exogenous arachidonic acid to $PGD_2$ in a dose-dependent manner with an $IC_{50}$ values of $190\;{\mu}M$, using a COX enzyme assay kit. However, at concentrations up to $80\;{\mu}M$, MG did not inhibit COX-2 protein expression in BMMC, indicating that MG inhibits COX-2 activity directly. Furthermore, MG consistently inhibited the production of leukotriene $C_4\;(LTC_4)$ in a dose dependent manner, with an $IC_{50}$ value of $5.3\;{\mu}M$. These results demonstrate that MG has a dual cyclooxygenase-2/5-lipoxygenase inhibitory activity, which might provide the basis for novel anti-inflammatory drugs.

Keywords

References

  1. Bailey, A. E., Asplund, R. O., and Ali, M. S., Isolation of methyl gallate as the antitumor principle of Acer saccharinum. J. Nat. Prod., 49, 1149-1150 (1986) https://doi.org/10.1021/np50048a040
  2. Cho, E. J., Yokozawa, T., Rhyu, D. Y., Kim, S. C., Shibahara, N., and Park, J. C., Study on the inhibitory effects of Korean medicinal plants and their main compounds on the 1,1- diphenyl-2-picrylhydrazyl radical. Phytomedicine, 10, 544- 551 (2003) https://doi.org/10.1078/094471103322331520
  3. Cho, E. J., Yokozawa, T., Kim, H. Y., Shibahara, N., and Park, J. C., Rosa rugosa attenuates diabetic oxidative stress in rats with streptozotocin-induced diabetes. Am .J. Chin. Med., 32, 487-496 (2004) https://doi.org/10.1142/S0192415X04002132
  4. Chou, T. C., Anti-inflammatory and analgesic effects of paeonol in carrageenan-evoked thermal hyperalgesia, Br. J. Pharmacol., 139, 1146-1152 (2003) https://doi.org/10.1038/sj.bjp.0705360
  5. Dan, B. and Andrew, G., Chinese Herbal Medicine, 8th edn. Eastland Press: Seattle, 476–477 (1986)
  6. Fiorucci, S., Meli, R., Bucci, M., and Cirino, G.., Dual inhibitors of cyclooxygenase and 5-lipoxygenase. A new avenue in anti-inflammatory therapy? Biochem. Pharmacol., 62, 1433- 1438 (2001) https://doi.org/10.1016/S0006-2952(01)00747-X
  7. Galato, D., Ckless, K., Susin, M. F., Giacomelli, C., Ribeiro-do- Valle, R. M., and Spinelli, A., Antioxidant capacity of phenolic and related compounds: correlation among electrochemical, visible spectroscopy methods and structure-antioxidant activity. Redox. Rep., 6, 243-250 (2001) https://doi.org/10.1179/135100001101536391
  8. Kane, C. J., Menna, J. H., Sung, C. C., and Yeh, Y. C., Methyl gallate, methyl-3, 4,5-trihydoxybenzoate, is a potent and highly specific inhibitor of herpes simplex virus in vitro. II. Antiviral activity of methyl gallate and its derivatives. Biosci. Rep., 8, 95-102 (1988) https://doi.org/10.1007/BF01128976
  9. Kato, K., Yamashita, S., Kitanaka, S., and Toyoshima, S., Effect of gallic acid derivatives on secretion of Th1 cytokines and Th2 cytokines from anti CD3-stimulated spleen cells. Yakugaku Zasshi, 121, 451-457 (2001) https://doi.org/10.1248/yakushi.121.451
  10. Kim, H. C., Hanyak-Yakri-Hak, 1st edn. Jip-Moon Press: Seoul, 469-471 (2001)
  11. Kim, H. J., Chang, E. J., Bae, SJ, Shim, S. H., Park, H. D., Rhee, C. H., Park, J. H., and Choi, S. W., Cytotoxic and antimutagenic stilbenes from seeds of Paeonia lactiflora. Arch. Pharm. Res., 25, 293-299 (2002) https://doi.org/10.1007/BF02976629
  12. Lee, S. C., Kwon, Y. S., Son, K. H., Kim, H. P., and Heo, M. Y., Antioxidative constituents from Paeonia lactiflora. Arch. Pharm. Res., 28, 775-783 (2005) https://doi.org/10.1007/BF02977342
  13. Lee, S. H., Son, M. J., JU, H. K., Lin, C. X., Moon, T. C., Choi, H. G., Son, J. K., and Chang, H. W., Dual inhibition of cyclooxygenases- 2 and 5-lipoxygenase by deoxypodophyllotoxin (anthricin) in mouse bone marrow-derived mast cells. Biol. Pharm. Bull., 27, 786-788 (2004) https://doi.org/10.1248/bpb.27.786
  14. Lee, S. M., Li, M. L., Tse, Y. C., Leung, S. C., Lee, M. M., Tsui, S. K., Fung, K. P., Lee, C. Y., and Waye, M. M., Paeoniae Radix, a Chinese herbal extract, inhibit hepatoma cells growth by inducing apoptosis in a p53 independent pathway. Life Sci., 71, 2267–2277 (2002) https://doi.org/10.1016/S0024-3205(02)01962-8
  15. Lin, H. C., Ding, H. Y., Ko, F. N., Teng, C. M., and Wu, Y. C., Aggregation inhibitory activity of minor acetophenones from paeonia species, Planta Medica, 65, 595–599 (1999) https://doi.org/10.1055/s-1999-14030
  16. Lim, M. Y., Park, Y. H., Son, D. J., Kim, M. K., and Lee, H. S., Antiplatelet activity of gallic acid and methyl gallate. Food Sci. Biot., 13, 806-809 (2004)
  17. Moon, T. C., Murakami, M., Kudo, I., Son, K. H., Kim, H. P., Kang, S. S., and Chang, H. W., A new class of COX-2 inhibitor, rutaecarpine from Evodia rutaecarpa. Inflamm. Res., 48, 621-625 (1999) https://doi.org/10.1007/s000110050512
  18. Murakami, M., Matsumoto, R., Austen, K. F., and Arm, J. P., Prostaglandin endoperoxide synthase-1 and -2 couple to different transmembrane stimuli to generate prostaglandin $D_2$ in mouse bone marrow-derived mast cells. J. Biol. Chem., 269, 22269-22275 (1994)
  19. Murakami, M., Austen, K. F., and Arm, J. P., The immediate phase of c-kit ligand stimulation of mouse bone marrow-derived mast cells elicits rapid leukotriene C4 generation through posttranslational activation of cytosolic phospholipase A2 and 5-lipoxygenase. J. Exp. Med., 182, 197-206 (1995) https://doi.org/10.1084/jem.182.1.197
  20. Murakami, M., Kambe, T., Shimbara, S., and Kudo, I., Functional coupling between various phospholipase A2s and cyclooxygenases in immediate and delayed prostanoid biosynthetic pathways. J. Biol. Chem., 274, 3103-3115 (1999) https://doi.org/10.1074/jbc.274.5.3103
  21. Murakami, M. and Kudo, I., Diversity and regulatory functions of mammalian secretory phospholipase A2s. Adv. Immunol., 77, 163-194 (2001) https://doi.org/10.1016/S0065-2776(01)77017-4
  22. O'Banion, M. K., Winn, V. D., and Young, D. A., cDNA cloning and functional activity of a glucocorticoid-regulated inflammatory cyclooxygenase. Proc. Natl. Acad. Sci., U.S.A., 89, 4888-4892 (1992)
  23. Piper, P. J., Leukotrienes: possible mediators in bronchial asthma. Eur. J. Respir. Dis., Suppl. 129, 45-64 (1983)
  24. Sohi, K. K., Mittal, N., Hundal, M. K., and Khanduja, K. L., Gallic acid, an antioxidant, exhibits antiapoptotic potential in normal human lymphocytes: A Bcl-2 independent mechanism. J. Nutr. Sci. Vitaminol., 49, 221-227 (2003) https://doi.org/10.3177/jnsv.49.221
  25. Son, J. K., Son, M. J., Lee, E. K., Moon, T. C., Son, K. H., Kim, C. H., Kim, H. P., Kang, S. S., and Chang, H. W., Ginkgetin, a biflavone from Ginko biloba leaves, inhibits cyclooxygenases- 2 and 5-lipoxygenase in mouse bone marrow-derived mast cells. Biol. Pharm. Bull., 28, 2181-2184 (2005) https://doi.org/10.1248/bpb.28.2181
  26. Son, M. J., Moon, T. C., Lee, E. K., Son, K. H., Kim, H. P., Kang, S. S., Son, J. K., Lee, S. H., and Chang, H. W., Naturally occurring biflavonoid, ochanflavone, inhibits cyclooxygenases- 2 and 5-lipoxygenase in mouse bone marrow-derived mast cells. Arch. Pharm. Res., 29, 282-286 (2006) https://doi.org/10.1007/BF02968571
  27. Shoyma, Y., Yamada, Y., Nishioka, I., and Matsunaka, J., Depigmentation and inhibition of cell growth of B-16 melanoma cells by compounds isolated from Paeonia suffruticosa callus. Plant Cell Rep., 8, 711-713 (1990) https://doi.org/10.1007/BF00272100
  28. Stevens, R. L. and Austen, K. F., Recent advances in the cellular and molecular biology of mast cells. Immunol. Today, 10, 381-386 (1989) https://doi.org/10.1016/0167-5699(89)90272-7
  29. Vane, J. R., Inhibition of prostaglandin synthesis as a mechanism of action for aspirin-like drugs. Nat .New Biol., 231, 232-235 (1971) https://doi.org/10.1038/newbio231232a0
  30. Westenburg, H, E., Lee, K. J., Lee, S. K., Fong, H. H., van Breemen, R. B., Pezzuto, J. M., and Kinghorn, A. D., Activityguided isolation of antioxidative constituents of Cotinus coggygria. J. Nat. Prod., 63, 1696-1698 (2000) https://doi.org/10.1021/np000292h
  31. Whang, W. K., Park, H. S., Ham, I. H., Oh, M., Namkoong, H. Kim, H. K., Hwang, D. W., Hur, S. Y., Kim, T. E., Park, Y. G.., Kim, J. R., and Kim, J. W., Methyl gallate and chemicals structurally related to methyl gallate protect human umbilical vein endothelial cells from oxidative stress. Exp. Mol. Med., 37, 343-352 (2005) https://doi.org/10.1038/emm.2005.44
  32. Whittle, B. J., Higgs, G. A., Eakins, K. E., and Vane, J. R., Selective inhibition of prostaglandin production in inflammatory exudates and gastric mucosa. Nature, 284, 271-273 (1980) https://doi.org/10.1038/284271a0
  33. Wu, H. K., and Sheu, S. J., Capillary electrophoretic determination of the constituents of paeonia radix. J. Chromatogr. A., 753, 139-146 (1996) https://doi.org/10.1016/S0021-9673(96)00525-0
  34. Yamaguchi, M., Sayama, K., Yano, K., Lantz, C. S., Noben- Trauth, N., Ra ,C., Costa, J. J., and Galli, S. J., IgE enhances Fc epsilon receptor I expression and IgE-dependent release of histamine and lipid mediators from human umbilical cord blood-derived mast cells: synergistic effect of IL-4 and IgE on human mast cell Fc epsilon receptor I expression and mediator release. J. Immunol., 162, 5455-5465 (1999)
  35. Yasuda, T., Kon, R., Nakazawa, T., and Ohsawa, K., Metabolism of paeonol in rats, J. Nat. Prod., 62, 1142–1144 (1999) https://doi.org/10.1021/np980405l