Biofilm Formation of Food-borne Pathogens under Stresses of Food Preservation

식품 보존 스트레스에서의 식중독세균의 생체막 생성

  • Lee, No-A (Department of Food and Bioengineering, Kyungwon University) ;
  • Noh, Bong-Soo (Department of Food and Microbial Technology, Seoul Woman's University) ;
  • Park, Jong-Hyun (Department of Food and Bioengineering, Kyungwon University)
  • 이노아 (경원대학교 분자.식품생명공학과) ;
  • 노봉수 (서울여자대학교 식품미생물공학과) ;
  • 박종현 (경원대학교 분자.식품생명공학과)
  • Published : 2006.02.01


Most bacteria form biofilm as self-defence system, making efficient food sanitization, preservation, and instrument washing more difficult. Biofilm formation of Salmonella, E. coli, B. cereus, and S. aureus was observed during 24 hr food preservations by performing microtiter plate and glass wool assays. Most cells formed biofilm and attached onto glass wool. When biofilm formation and injury were analyzed on the microtiter plate, 10 and 20% acid-injured E. coli and S. aureus, respectively, 30-50% cold temperature $(4^{\circ}C)-injured$ B. cereus and E. coli, and 30-55% 6% sodium chloride solution-injured Salmonella showed significant biofilm formation. Results indicate biofilm formation level differed within species depending on type of stress.


  1. Hengge R. Interplay of global regulators and cell physiology in the general stress response of Escherichia coli. Curr. Opin. Microbiol. 2: 148-152 (1999)
  2. Costerton JW, Cheng G, Geesey TI. Bacterial biofilms in nature and disease. Annu. Rev. Microbiol. 41: 435-464 (1987)
  3. Res TJ, Frank JF. Susceptibility of starved planktonic and biofilm Listeria monocytogenes to quatrnary ammonium sanitizer as determined by direct viable and agar plate count. J. Food. Prot. 56: 573-576 (1993)
  4. Pickett E, Murano EA. Sensitivity of Listeria monocytogenes to sanitizers after exposure to a chemical shock. J. Food Prot. 59: 374-378 (1996)
  5. O'Toole, GA, Kolter R. Initiation of biofilrn formation in Pseudomonas fluorescens WCS365 proceed via multiple, convergent signaling pathways: Agenetic analysis. Mol. Microbiol. 28: 449-461 (1998)
  6. Stanle NR, Britton AD. Identification of catabolite repression as a physiological regulator of biofilm formation by Bacillus subtilis by use of DNA microarrays. J. Bacteriol. 185: 1951-1957 (2003)
  7. Langmark J, Michael V. Accumulation and fate of microorganisms and microspheres in biofilms formed in a pilot-scale water distribution system. Appl. Environ. Microbiol. 71: 706-712 (2005)
  8. Jee-Hoon R, Larry R. Biofilm formation by Escherichia coli O157:H7 on stainless steel: effect of exopolysaccharide and curli production on its resistance to chlorine. Appl. Environ. Microbiol. 71: 247-254 (2005)
  9. Somers EB, Schoeni JL. Effect of trisodium phosphate on biofilm and planktonic cells of Campylobacter jejuni, Escherichia coli O157:H7, Listeria nionocytogenes and Salmonella typhimurium Int. J. Food Microbiol. 22: 269-276 (1994)
  10. Srinivasan R, Stewart PS, Griebe T. Biofilm parameters influencing biocide efficacy. Biotechnol. Bioeng. 46: 553-560 (1995)
  11. Nicky C, O'Toole GA. Alpha-toxin is required for biofilm formation by Staphylococcus aureus. J. Bacteriol. 185: 3214-3217 (2003)
  12. Soot LM, Pierson MD. Effect of environmental stress on the ability of Listeria monocytogenes Scott A to attach to food contact surfaces. J. Food Prot. 61: 1293-1298 (1998)
  13. Marinda C, Theron J. Proteomic analysis reveals differential protein expression by Bacillus cereus during biofilm formation. Appl. Envir. Microbiol. 68: 2770-2780 (2002)
  14. Djordjevic M, McLandsborough LA. Microtiter plate assay for assessment of Listeria monocytogenes biofilm formation. Appl. Environ. Microbiol. 68: 2950-2958 (2002)
  15. Taormina PJ, Beuchat LR. Survival and heat resistance of Listeria monocytogenes after exposure to alkali and chlorine. Appl. Environ. Microbiol. 67: 2555-2563 (2001)
  16. Basar T, Guermonprez P. Delivery of CD8 T-cell epitopes into major histocompatibility complex class I antigen presentation pathway by Bordetella pertussis adenylate cyclase: delineation of cell invasive structures and permissive insertion sites. Appl. Environ. Microbiol. 68: 2770-2780 (2003)
  17. Rowbury RJ. Cross-talk involving extracellular sensors and extracellular alarmones gives early warning to unstressed Escherichia coli of impending lethal chemical stress and leads to induction of tolerance responses. J. Appl. Microbiol. 90:677-695(2001)
  18. Mosteller TM. Sanitizer efficacy toward attached bacteria in a simulated milk pipeline system using pure and mixed cultures. Dissertation Abstracts lnt. 54: 4978-B (1993)
  19. Farrell BL. Attachment of Escherichia coli O157:H7 in ground beef to meat grinders and survival alter sanitation with chlorine and peroxyacetic acid. J . Food Prot. 61: 817-822 (1998)
  20. Wang G, Doyle M. Survival of enterohaemorrhagic Escherichia coli O157:H7 in water, J. Food Prot. 61: 662-667 (1998)
  21. Flahaut S, Frere J, Auffray Y. The oxidative stress response in Enterococcus faecalis: relationship between $H_2O_2$ tolerance and $H_2O_2$ stress proteins. Lett. Appl. Microbiol. 26: 259-264 (1998)
  22. Keren S, Romling U, Yaron S. Effect of heat, acidification, and chlorination on Salmonella enterica serovar typhimurium cells in a biofilm formed at the air-liquid interface. Appl. Environ. Microbiol. 71: 1163-1168(2005)