식품 보존 스트레스에서의 식중독세균의 생체막 생성

Biofilm Formation of Food-borne Pathogens under Stresses of Food Preservation

  • 이노아 (경원대학교 분자.식품생명공학과) ;
  • 노봉수 (서울여자대학교 식품미생물공학과) ;
  • 박종현 (경원대학교 분자.식품생명공학과)
  • Lee, No-A (Department of Food and Bioengineering, Kyungwon University) ;
  • Noh, Bong-Soo (Department of Food and Microbial Technology, Seoul Woman's University) ;
  • Park, Jong-Hyun (Department of Food and Bioengineering, Kyungwon University)
  • 발행 : 2006.02.01

초록

세균이 외부stress에 대한 자가저항으로 biofilm형성을 하는 것은 식품 뿐만아니라 식품기기등의 세척, 소독등의 식품안전 확보에 많은 어려움을 주게 된다. 본 연구에서는 glass wool과 mlcrotiter plate assay를 이용하여 주요 식중독 세균인 Salmonella, E. coli, B. cereus, S. aureus를 여러가지 식품보존하에서 상해와 biofilm형성 정도를 비교하였다. 이들 세균은 외부의 stress없는 조건하에서도 상해를 받지 않았고 모두 biofilm이 형성되어 glass wool에 부착되었다. Microtiter plate assay에서의 상해별 biofilm형성은 acid stress에서 10%이내의 상해를 받은 E. coli와 약 40%의 상해를 받은 S. aureus에서 높게 나타났다. $4^{\circ}C$의 cold temperature에서는 30-50% 상해를 나타낸 B. cereus와 E. coli가 높은 biofilm 형성을 보였고 cold starvation에서는 다른 stress에 비해 전체적으로 biofilm형성도가 낮은 값으로 측정되었다. 그리고 6% sodium chlorine solution에서 30-55%의 상해를 입은 Salmonella가 높은 biofilm 형성도를 보였다. 그러나 같은 종의 식중독 세균이라도 외부의 stress 대하여 다양한 정도의 biofilm을 생성하는 것으로 보인다. 따라서 식품으로부터 이들 식중독 세균을 제어하기 위해서는 대상식품의 보존환경에 따른 biofilm 형성특성을 고려해야 할 것으로 사료된다.

Most bacteria form biofilm as self-defence system, making efficient food sanitization, preservation, and instrument washing more difficult. Biofilm formation of Salmonella, E. coli, B. cereus, and S. aureus was observed during 24 hr food preservations by performing microtiter plate and glass wool assays. Most cells formed biofilm and attached onto glass wool. When biofilm formation and injury were analyzed on the microtiter plate, 10 and 20% acid-injured E. coli and S. aureus, respectively, 30-50% cold temperature $(4^{\circ}C)-injured$ B. cereus and E. coli, and 30-55% 6% sodium chloride solution-injured Salmonella showed significant biofilm formation. Results indicate biofilm formation level differed within species depending on type of stress.

키워드

참고문헌

  1. Hengge R. Interplay of global regulators and cell physiology in the general stress response of Escherichia coli. Curr. Opin. Microbiol. 2: 148-152 (1999) https://doi.org/10.1016/S1369-5274(99)80026-5
  2. Costerton JW, Cheng G, Geesey TI. Bacterial biofilms in nature and disease. Annu. Rev. Microbiol. 41: 435-464 (1987) https://doi.org/10.1146/annurev.mi.41.100187.002251
  3. Res TJ, Frank JF. Susceptibility of starved planktonic and biofilm Listeria monocytogenes to quatrnary ammonium sanitizer as determined by direct viable and agar plate count. J. Food. Prot. 56: 573-576 (1993) https://doi.org/10.4315/0362-028X-56.7.573
  4. Pickett E, Murano EA. Sensitivity of Listeria monocytogenes to sanitizers after exposure to a chemical shock. J. Food Prot. 59: 374-378 (1996) https://doi.org/10.4315/0362-028X-59.4.374
  5. O'Toole, GA, Kolter R. Initiation of biofilrn formation in Pseudomonas fluorescens WCS365 proceed via multiple, convergent signaling pathways: Agenetic analysis. Mol. Microbiol. 28: 449-461 (1998) https://doi.org/10.1046/j.1365-2958.1998.00797.x
  6. Stanle NR, Britton AD. Identification of catabolite repression as a physiological regulator of biofilm formation by Bacillus subtilis by use of DNA microarrays. J. Bacteriol. 185: 1951-1957 (2003) https://doi.org/10.1128/JB.185.6.1951-1957.2003
  7. Langmark J, Michael V. Accumulation and fate of microorganisms and microspheres in biofilms formed in a pilot-scale water distribution system. Appl. Environ. Microbiol. 71: 706-712 (2005) https://doi.org/10.1128/AEM.71.2.706-712.2005
  8. Jee-Hoon R, Larry R. Biofilm formation by Escherichia coli O157:H7 on stainless steel: effect of exopolysaccharide and curli production on its resistance to chlorine. Appl. Environ. Microbiol. 71: 247-254 (2005) https://doi.org/10.1128/AEM.71.1.247-254.2005
  9. Somers EB, Schoeni JL. Effect of trisodium phosphate on biofilm and planktonic cells of Campylobacter jejuni, Escherichia coli O157:H7, Listeria nionocytogenes and Salmonella typhimurium Int. J. Food Microbiol. 22: 269-276 (1994) https://doi.org/10.1016/0168-1605(94)90178-3
  10. Srinivasan R, Stewart PS, Griebe T. Biofilm parameters influencing biocide efficacy. Biotechnol. Bioeng. 46: 553-560 (1995) https://doi.org/10.1002/bit.260460608
  11. Nicky C, O'Toole GA. Alpha-toxin is required for biofilm formation by Staphylococcus aureus. J. Bacteriol. 185: 3214-3217 (2003) https://doi.org/10.1128/JB.185.10.3214-3217.2003
  12. Soot LM, Pierson MD. Effect of environmental stress on the ability of Listeria monocytogenes Scott A to attach to food contact surfaces. J. Food Prot. 61: 1293-1298 (1998) https://doi.org/10.4315/0362-028X-61.10.1293
  13. Marinda C, Theron J. Proteomic analysis reveals differential protein expression by Bacillus cereus during biofilm formation. Appl. Envir. Microbiol. 68: 2770-2780 (2002) https://doi.org/10.1128/AEM.68.6.2770-2780.2002
  14. Djordjevic M, McLandsborough LA. Microtiter plate assay for assessment of Listeria monocytogenes biofilm formation. Appl. Environ. Microbiol. 68: 2950-2958 (2002) https://doi.org/10.1128/AEM.68.6.2950-2958.2002
  15. Taormina PJ, Beuchat LR. Survival and heat resistance of Listeria monocytogenes after exposure to alkali and chlorine. Appl. Environ. Microbiol. 67: 2555-2563 (2001) https://doi.org/10.1128/AEM.67.6.2555-2563.2001
  16. Basar T, Guermonprez P. Delivery of CD8 T-cell epitopes into major histocompatibility complex class I antigen presentation pathway by Bordetella pertussis adenylate cyclase: delineation of cell invasive structures and permissive insertion sites. Appl. Environ. Microbiol. 68: 2770-2780 (2003) https://doi.org/10.1128/AEM.68.6.2770-2780.2002
  17. Rowbury RJ. Cross-talk involving extracellular sensors and extracellular alarmones gives early warning to unstressed Escherichia coli of impending lethal chemical stress and leads to induction of tolerance responses. J. Appl. Microbiol. 90:677-695(2001) https://doi.org/10.1046/j.1365-2672.2001.01312.x
  18. Mosteller TM. Sanitizer efficacy toward attached bacteria in a simulated milk pipeline system using pure and mixed cultures. Dissertation Abstracts lnt. 54: 4978-B (1993)
  19. Farrell BL. Attachment of Escherichia coli O157:H7 in ground beef to meat grinders and survival alter sanitation with chlorine and peroxyacetic acid. J . Food Prot. 61: 817-822 (1998) https://doi.org/10.4315/0362-028X-61.7.817
  20. Wang G, Doyle M. Survival of enterohaemorrhagic Escherichia coli O157:H7 in water, J. Food Prot. 61: 662-667 (1998) https://doi.org/10.4315/0362-028X-61.6.662
  21. Flahaut S, Frere J, Auffray Y. The oxidative stress response in Enterococcus faecalis: relationship between $H_2O_2$ tolerance and $H_2O_2$ stress proteins. Lett. Appl. Microbiol. 26: 259-264 (1998) https://doi.org/10.1046/j.1472-765X.1998.00325.x
  22. Keren S, Romling U, Yaron S. Effect of heat, acidification, and chlorination on Salmonella enterica serovar typhimurium cells in a biofilm formed at the air-liquid interface. Appl. Environ. Microbiol. 71: 1163-1168(2005) https://doi.org/10.1128/AEM.71.3.1163-1168.2005