Effects of Mild Heat Treatment on Microorganisms, Respiratory Characteristics and Firmness of Fuji Apple

중온 열수 처리가 사과의 표면 미생물, 호흡특성 및 경도에 미치는 영향

  • Published : 2006.02.01

Abstract

Microorganisms involved in decaying Fuji apples during storage were investigated. Seven pathogens were isolated from the rotted fruits. Penicillium spp. was derived from 65-75% of decayed apples with P. expansum being dominant species. Effects of mild heat treatment on microbial reduction, respiration, and texture characteristics in Fuji apples were examined through hot water dipping at $40-65^{\circ}C$ for varied timε periods. Initial counts of total microorganisms and moulds in fresh fruits s showed 4.75 and 4.66 log CFU/g in a stem, as well as 5.35 and 4.32 log CFU/g in a calyx, respectively. The heat treatment at $40^{\circ}C$ for 180 min significantly reduced the population of total microorganisms and moulds in the fruits. Respiration rate of the apple fruits increased immediately after heat treatment and then returned to the normal level during storage. The rates of ethylene production in the fruits treated at $40-50^{\circ}C$ were maintained lower than that of the untreated control. The fruits treated at $40^{\circ}C$ showed slightly greater flesh firmness than the other apple samples during storage.

사과의 부패에 관여하는 주요 미생물을 조사하였던 바 7종의 병원균을 분리하였다. 사과의 부패는 Penicillium spp.에 의한 피해가 65-75%에 달하였으며, 특히 Penicillium expansum의 피해가 가장 심하였다. $40-65^{\circ}C$ 범위에서 중온 열수처리에 의한 미생물 제어효과와 저장 중 호흡 및 경도 변화를 조사하였다. 열수 처리 전 사과 꼭지의 총균수와 곰팡이수는 각각 4.75 log CFU, 4.66 log CFU이었고, 꽃받침의 총균수와 곰팡이 수는 각각 5.35 log CFU, 4.32 log CFU 이었으며, 열수 처리 시 총균과 곰팡이는 $40^{\circ}C$에서 180분간 처리 시 감소율이 가장 높았다. 사과의 호흡률은 열수 처리 직후 다소 높았지만 저장기간이 경과함에 따라 대조구와 유사한 수준을 나타내었으며, 에틸렌의 경우 대조구에 비해 전반적으로 낮게 유지되었다. 한편 사과 과육의 경도는 $40^{\circ}C$에서 처리한 경우 대조구 및 다른 처리구에 비해 저장기간 중 다소 높은 값을 보였다.

Keywords

References

  1. Chalutz E, Waks J, Schiffmann-Nadel M. A comparison of the response of different citrus fruit cultivars to storage temperature. Scientia Horticulturae 25: 271-277 (1985) https://doi.org/10.1016/0304-4238(85)90125-6
  2. Wszelaki AL, Mitcham EJ. Effects of superatmospheric oxygen on strawberry fruit quality and decay. Postharvest Biol. Technol. 20: 125-133 (2000) https://doi.org/10.1016/S0925-5214(00)00135-6
  3. Burton CL, Dewey DH. New fungicide to control benomyl-resistant Penicillium expansum in apples. Plant Diseases 65: 881-883 (1981) https://doi.org/10.1094/PD-65-881
  4. Aegerter AF, Folwell RJ. Economic aspects of alternatives to methyl bromide in the postharvest and quarantine treatment of selected fresh fruits. Crop Protect. 19: 161-168 (2000) https://doi.org/10.1016/S0261-2194(99)00081-2
  5. Spadaro D, Garibaldi A, Gullino ML. Control of Penicillium expansum and Botrytis cinerea on apple combining a biocontrol agent with hot water dipping and acibenzolar-S-methyl, baking soda, or ethanol application. Postharvest Biol. Technol. 33: 141-151 (2004) https://doi.org/10.1016/j.postharvbio.2004.02.002
  6. Vinas I, Usall J, Teixido N, Sanchis V. Biological control of major postharvest pathogens on apple with Candida sake. Intl J. Food Microbiol. 40: 9-16 (1998) https://doi.org/10.1016/S0168-1605(98)00009-9
  7. Janisiewicz WJ, Jeffers SN. Efficacy of commercial formulation of two biofungicides for control of blue mold and gray mold of apples in cold storage. Crop Protect. 16: 629-633 (1997) https://doi.org/10.1016/S0261-2194(97)00048-3
  8. Kader AA, Zagory D, Kerbel EL. Modified atmosphere packing of fruits and vegetables. Crit. Rev. Food Sci. Nutr. 28: 1-5 (1989) https://doi.org/10.1080/10408398909527506
  9. Jiang Y, Joyce DC, Macnish AJ. Extension of the shelf life of banana fruit by l-methylcyclopropene in combination with polyethylene bags. Postharvest Biol. Technol. 16: 187-193 (1999) https://doi.org/10.1016/S0925-5214(99)00009-5
  10. Somok RM. Controlled atmosphere storage of fruits. pp. 277-278. In: Horticultural Reviews 1. AVI Publishing Co., Westport, CT, USA (2001)
  11. Schirra M, D'hallewin G, Ben-Yehoshua S, Fallik E. Host- pathogen interactions modulated by heat treatment. Postharvest Biol. Technol. 21: 71-85 (2000) https://doi.org/10.1016/S0925-5214(00)00166-6
  12. Leverentz B, Janisiewicz WJ, Conway WS, Saftner RA, Fuchs Y, Sams CE, Camp MJ. Combining yeasts or a bacterial biocontrol agent and heat treatment to reduce postharvest decay of 'Gala' apples. Postharvest Biol. Technol. 21: 87-94 (2000) https://doi.org/10.1016/S0925-5214(00)00167-8
  13. Ferguson IB, Ben-Yehoshua S, Mitcham EJ, McDonald RE, Lurie S. Postharvest heat treatments: Introduction and workshop summary. Postharvest Biol. Technol. 21: 1-6 (2000) https://doi.org/10.1016/S0925-5214(00)00160-5
  14. Fallik E. Prestorage hot water treatments: immersion, rinsing and brushing. Postharvest Biol. Technol. 32: 125-134 (2004) https://doi.org/10.1016/j.postharvbio.2003.10.005
  15. Karabulut OA, Gabler FM, Mansour M, Smilanick JL. Postharvest ethanol and hot water treatments of table grapes to control gray mold. Postharvest Biol, Technol. 34: 169-177 (2004) https://doi.org/10.1016/j.postharvbio.2004.05.003
  16. Porat R, Daus A, Weiss D, Cohen L, Fallik E, Samir D. Reduction of postharvest decay in organic citrus fruit by a short hot water brushing treatment. Postharvest Biol. Technol. 18: 151-157 (2000) https://doi.org/10.1016/S0925-5214(99)00065-4
  17. Olesen T, Nacey L, Wiltshire N, O'brien S. Hot water treatments for control of rot on harvested litchi (Litchi chinensis Sonn.) fruit. Postharvest Biol. Technol. 32: 135-1146 (2004) https://doi.org/10.1016/j.postharvbio.2003.10.009
  18. McDonald RE, Mccollum TG, Baldwin EA. Temperature of waer heat treatments influences tomato fruit quality following low-temperature storage. Postharvest Biol. Technol. 16: 147-155 (1999) https://doi.org/10.1016/S0925-5214(99)00008-3
  19. Lurie S. Postharvest heat treatments. Postharvest Biol. Technol. 14: 257-269 (1998) https://doi.org/10.1016/S0925-5214(98)00045-3
  20. Seo JY, Kim EH, Hong SI, Park HW, Kim DM. Respiratory characteristics and quality of Fuji apple treated with mild lot water at critical conditions. Korean J Food Sci. Technol. 37: 372-376 (2005)
  21. Fallik E, Sharon T, Feng X, Lurie S. Ripening characterization and decay development of stored apples after a short pre-storage hot water rinsing and brushing. Innovative Food Sci. Emerging Technol. 2: 127-132 (2001) https://doi.org/10.1016/S1466-8564(01)00032-7
  22. Bourne MC, Moyer JC. The extrusion principle in texture measurement of fresh peas. Food Technol. 22: 1013-1018 (1968)
  23. Prusky D, Bazak M, Ben-Arie R. Development, persistence, survival and strategies for control of thiabendazole-resistant strains of on pome fruits. Phytopathology 75: 877-882 (1985) https://doi.org/10.1094/Phyto-75-877
  24. Pierson CF, Leponis MJ, McColloch LP. Market diseases of apples, pears and quinces. In: U.S. Agric. Handbook 376. U.S. Gov. Printing Office, Washington, DC, USA (1971)
  25. Lurie S, Klein JD. Control of apple ripening by high temperatures. Israel J. Botany. 40: 260-261 (1991)
  26. Fallik E, Klein J, Grinberg S, Lomaniec E, Lurie S, Lalazar A. Effect of postharvest heat treatment of tomatoes on fruits ripening and decay caused by Botrytis cinerea. Plant Disease 77: 985-988 (1993) https://doi.org/10.1094/PD-77-0985
  27. Ben-Shalom N, Hanzon J, Lurie S, Klein JD. A postharvest heat treatment inhibits cell wall degradation in apples during storage. Phytochemistry 34: 955-958 (1993) https://doi.org/10.1016/S0031-9422(00)90693-9