Isolation and Identification of an Antioxidant Substance from Ethanol Extract of Wild Grape (Vitis coignetiea) Seed

머루종자 에탄올 추출물로부터 항산화활성물질 분리 및 동정

  • Kim, Nan-Young (School of biotechnology and Bioengineering, Kangwon National University) ;
  • Choi, Jae-Ho (School of biotechnology and Bioengineering, Kangwon National University) ;
  • Kim, Young-Guk (School of biotechnology and Bioengineering, Kangwon National University) ;
  • Jang, Mi-Young (Department of Food Science & Technology and Functional Food Research Center, Chonnam National University) ;
  • Moon, Jea-Hak (Department of Food Science & Technology and Functional Food Research Center, Chonnam National University) ;
  • Park, Geun-Hyung (Department of Food Science & Technology and Functional Food Research Center, Chonnam National University) ;
  • Oh, Deog-Hwan (School of biotechnology and Bioengineering, Kangwon National University)
  • 김난영 (강원대학교 바이오산업공학부) ;
  • 최재호 (강원대학교 바이오산업공학부) ;
  • 김영국 (강원대학교 바이오산업공학부) ;
  • 장미영 (전남대학교 응용생물공학부 및 기능성식품연구센터) ;
  • 문제학 (전남대학교 응용생물공학부 및 기능성식품연구센터) ;
  • 박근형 (전남대학교 응용생물공학부 및 기능성식품연구센터) ;
  • 오덕환 (강원대학교 바이오산업공학부)
  • Published : 2006.02.01

Abstract

Antioxidant compound(s) were identified from the ethanol extract of wild grape (Vitis coignetiea) seed. Organic solvent fractions of n-hexane, chloroform, ethyl acetate and butanol were obtained from the ethanol extract of wild grape seed, among which ethyl acetate fraction showed the strongest reducing power. Ethyl acetate fraction was further purified through ODS column chromatography and HPLC, and isolated antioxidative active compound was identified through $^1H-NMR$ as (+)-catechin (52.7 g/100 g). (+)-Catechin and ethyl acetate fraction both showed approximately 80% scavenging effect. These results indicated (+)-catechin in the ethyl acetate fraction synergetically interacts with unknown antioxidative compound(s).

본 연구는 머루종자 에탄올 추출물로부터 항산화 활성물질을 분리 동정하고 분리 물질의 항산화 활성을 검토하기 위하여 수행되었다. 머루종자 70% 에탄올 추출물로부터 hexane, chloroform, ethyl acetate, butanol, 및 수용액으로 순차 용매분획하여 그들의 항산화 활성 및 환원력을 비교한 결과, ethyl acetate층이 가장 강한 활성을 나타냈으며, 각 획분의 TLC-DPPH 분석에서도 ethyl acetate층에서 현저히 높은 항산화활성을 보인 화합물의 존재가 확인되었다. 이에 ethyl acetate층을 대상으로 ODS column chromatography 및 HPLC를 이용하여 활성본체를 단리하고, 1H-NMR 분석을 통하여 (+)-catechin으로 동정하였다. 머루종자 중의 (+)-catechin 함량은 52.7 mg/100 g으로 확인되었으며, (+)-catechin이 머루종자 중의 주요한 항산화 물질로서 사료되었다. 한편, 같은 농도$(15\;{\mu}g/{\mu}L)$에서 (+)-catechin과 ethyl acetate 분획물의 DPPH radical 소거활성이 약 80%로 비슷한 결과를 나타낸 것으로 보아 ethyl acetate 분획물에는 (+)-catechin이외의 미확인 물질들이 서로 상승작용을 하여 강한 항산화 활성을 나타내는 것으로 판단되었다.

Keywords

References

  1. Francene MS, Monica MB, Carl LK. Cocoa and chocolate flavonoids: Implications for cardiovascular health. J. Am. Dietetic Assoc. 103: 215-223 (2003) https://doi.org/10.1053/jada.2003.50028
  2. Record IR, Lane JM. Simulated intestinal digestion of green and black teas. Food Chem. 73: 481-486 (2001) https://doi.org/10.1016/S0308-8146(01)00131-5
  3. Bonilla F, Mayen M, Merida J, Medina M. Extraction of phenolic compounds from red grape marc for use as food lipid antioxidants. Food Chem. 66: 209-215 (1999) https://doi.org/10.1016/S0308-8146(99)00046-1
  4. Lu YR, Foo LY. Antioxidant and radical scavenging activities of polyphenols from apple pomace. Food Chem. 68: 81-85 (2000) https://doi.org/10.1016/S0308-8146(99)00167-3
  5. Huang KS, Lin M and Cheng GF. Anti-inflammatory tetramers of resveratrol from the roots of Vitis amurensis and the conformations of the seven-membered ring in some oligostilbenes. Phytochemistry 58: 357-362 (2001) https://doi.org/10.1016/S0031-9422(01)00224-2
  6. Lee EO, Kwon BM, Song GY, Chae CH, Kim HS. Heayneanol A induces apoptosis via cytochrome c release and caspase antivation in human leukemic U937 cells. Life Sci. 74:2313-2326 (2004) https://doi.org/10.1016/j.lfs.2003.10.004
  7. Jayaprakasha GK, Singh RP, Sakariah KK. Antioxidant activity of grape seed (Vitis vinifera) extracts on peroxidation models in vitro. Food Chem. 73: 285-290 (2001) https://doi.org/10.1016/S0308-8146(00)00298-3
  8. Jayaprakasha GK, Tamil S, Sakariah KK. Antibacterial and antioxidant activites of grape seed (Vitis vinifera) extracts. Food Res. Intl. 36: 117-122 (2003) https://doi.org/10.1016/S0963-9969(02)00116-3
  9. Oreste B, Susanna B, Maria SC, Saverio M. A new HPLC method for the determination of polyphenols in wines based on the use less aggressive eluents and a coupled revelation system. Electroanalysis 17: 1204-1207 (1998)
  10. Babich H, Krupka ME, Nissim HA, Zuckerbraun HL. Differential in vitro cytotoxicity of (-)-epicatechin gallate (ECG) to cancer and normal cells from the human oral cavity. Toxicol. in vitro 19: 231-242 (2005) https://doi.org/10.1016/j.tiv.2004.09.001
  11. Moon SO, Lee JY, Kim EJ, Choi SW. Improved method for determination of catechin and its derivatives in extract and oil of grape seeds. Korean J. Food Sci. Technol. 35:576-585 (2003)
  12. Marion MYC. Antimicrobial effect of resveratrol on dermatophytes and bacterial pathogens of the skin. Biochem. Pharm. 63: 99-104 (2002) https://doi.org/10.1016/S0006-2952(01)00886-3
  13. Dourtoglou VG, Makris DP, Fabienne BD, Aonas C. trans-Resveratrol concentration in wines produced in Greece. J. Food Comp. Anal. 12: 227-233 (1999) https://doi.org/10.1006/jfca.1999.0821
  14. Maria C, Claudio C, Lisa E, Isabela N, Ingrid Z. Direct HPLC analysis of quercetin and trans-resveratrol in red wine, grape, and winemaking byproducts. J. Agric. Food Chem. 51: 5226-5231 (2003) https://doi.org/10.1021/jf034149g
  15. Luque JM, Luque MD. Extraction of fatty acids from grape seed by superheated hexane. Talanta 68: 126-130 (2005) https://doi.org/10.1016/j.talanta.2005.04.054
  16. Kim SK. Deacidification of new wild grape wine. Korean J. Food Nutr. 9:265-270 (1996)
  17. Kim SY, Kim SK. Winemaking from new wild grape. Korean J. Food Nutr. 10:254-262 (1997)
  18. Wang JN, Kano Y, Nomura T, Chen YJ. Procyanidins from the seeds of Vitis amurensis. Phytochemistry 53: 1097-1102 (2000) https://doi.org/10.1016/S0031-9422(00)00004-2
  19. Kim NY, Kim YK, Bae KJ, Choi JH, Moon JH, Park GH, Oh DH. Free radical scavenging effect and extraction condition of ethanol extracts and fractions of wild grape seed (Vitis coignetiea). J. Korean Soc. Food Nutr. 34: 755-758 (2005) https://doi.org/10.3746/jkfn.2005.34.6.755
  20. Oyaizu M. Studies on products of browning reactions: Antioxidative activities of products of browning reaction prepared from glucosamine. Jpn. J. Nutr. 44: 307-315 (1986) https://doi.org/10.5264/eiyogakuzashi.44.307
  21. Takao T, Kitatani F, Sakata K. A simple screening method for antioxidants and isolation of several antioxidants produced by marine bacteria from fish and shellfish. Biosci. Biotech. Biochem. 58: 1780-1783 (1994) https://doi.org/10.1271/bbb.58.1780
  22. Kim SM, Cho YS, Sung SK. The antioxidant ability and nitrite scavenging ability of plant extracts. Korean J. Food Sci. Technol. 33:626-632(2001)
  23. Kim SJ, Cho JY, Wee JH, Jang MY, Kim C, Rim YS, Shin SC, Ma SJ, Moon JH, Park KH. Isolation and characterization of antioxidative compounds from the aerial parts of Angelica keiskei. Food Sci. Biotechnol. 14: 58-63 (2005)
  24. Wettasinghe M, Shahidi F, Amarowicz R. Identification and quantification of low molecular weight phenolic antioxidants in seeds of evening primrose (Oenothera biennis L.). J. Agric. Food Chem. 50: 1267-1271 (2002) https://doi.org/10.1021/jf010526i
  25. Sa JH, Shin IC, Jeong KJ, Shim TH, Oh HS, Park SK, Kim CM. Catechin content and antioxidative effect from Rosa davurica Pall. Korean J. Pharmacogn. 33: 177-181 (2002)
  26. Ramila G, Stamatina K, Dimitris PM, Panagiotis K. Determination of low molecular weight polyphenolic constituents in grape (Vitis vinifera sp.) seed extract: Correlation with antiradical activity. Food Chem. 89: 1-9 (2005) https://doi.org/10.1016/j.foodchem.2004.02.010
  27. Peterson J, Dwyer J, Bhagwat S, Haytowitz D, Holden AL, Eldridge GB, Aladcsanmi J. Major flavonoids in dry tea. J. Food Comp. Anal. 18: 487-501 (2005) https://doi.org/10.1016/j.jfca.2004.05.006
  28. Susana GM, Julian CR, Celestino SB. Extraction of flavan-3-ols from grape seed and skin into wine using simulated maceration. Analytica Chimica Acta 513: 283-289 (2004) https://doi.org/10.1016/j.aca.2003.10.019
  29. Zofia C, Lai YF, Lawrence JP. Compositional changes in lower molecular ewight falvans during prape maturation. Phytochem. 11: 1819-1822 (1979)
  30. Koh KH, Kim HW, Han SH, Park YH, Lee CH. Polyphenolic compounds and superoxide radical scavenging activity of MoruJu. Korean J. Food Sci. Biotechnol. 12: 290-297 (2003)