Electrophoretical Properties of Transglutaminase Treated Milk Product Powders

Transglutaminase를 처리한 분말 유제품의 전기영동적 특성

  • Jeong, Ji-Eun (Department of Food and Nutrition, Human Ecology Research Institute, BioFood Research Center, Chonnam National University) ;
  • Hong, Youn-Ho (Department of Food and Nutrition, Human Ecology Research Institute, BioFood Research Center, Chonnam National University)
  • 정지은 (전남대학교 식품영양학과.생활과학연구소.바이오식품연구센터) ;
  • 홍윤호 (전남대학교 식품영양학과.생활과학연구소.바이오식품연구센터)
  • Published : 2006.04.01

Abstract

This study was performed to understand the behavior of protein mobility and intensity of enzymatic hydrolysis according to crosslinking of sodium caseinate, whey protein isolate, skim milk and whole milk powders with or without transglutaminase (TGase, w/w = 200 : 1) at $38^{\circ}C$. Whey protein was limited to crosslinking and skim milk was relatively more increased in high molecular polymer than whole milk. The degree of crosslinking decreased in the order of sodium caseinate>skim milk>whole milk>whey protein isolate. The SDS-PAGE results indicated that main bands of TGase treated samples had a high mobility and formed bands of molecular weights below 15 kDa by hydrolysis with pepsin after 10 min of reaction time. However, ${\beta}-lactoglobulin$ showed remarkable stability against pepsin hydrolysis treated with and without TGase. The high molecular polymers were easily hydrolyzed with digestive enzymes in vitro experiment. These results suggested that novel dairy products using TGase would have no special digestive problem in human body.

본 연구에서는 시판되고 있는 카제인 나트륨, 유청 단백질 분리물, 탈지분유 및 전지분유에 TGase를 첨가하여 단백질 이동특성 및 pepsin에 의한 가수분해 정도를 조사하였다. 우유 단백질과 분말 제품들을 TGase로 2시간 동안 반응시킨 후 전기영동을 실시한 결과 모든 시료에서 고분자량의 중합체를 형성하였으며 가교결합 정도는 카제인 나트륨 >탈지분유 >전지분유 >유청 단백질 분리물 순으로 감소하는 양상을 보였다. 인체 내 소화효소인 pepsin에 의하여 가수분해된 카제인 나트륨은 10kDa 이하의 펩타이드로 분해됐고, 유청 단백질은 분해 전, 후 양상이 유사하였다. 유청 단백질 중 ${\beta}-Lg$는 pepsin에 의해 거의 분해되지 않고 저항성을 보였다. 탈지분유, 전지분유 역시 더 낮은 분자량의 펩타이드가 관찰되었는 바, in vitro 상에서의 TGase작용으로 인한 교차결합은 소화효소에 의한 가수분해가 용이함을 확인하였다. 이 결과는 TGase를 첨가하여 새로운 유제품을 개발, 이용하는데 인체내에서의 소화에 거의 문제가 없을 것임을 시사하는 것으로 보인다.

Keywords

References

  1. Motoki M, Nio N. Crosslinking between different food proteins by transglutaminase. J. Food Sci. 48: 561-566 (1983) https://doi.org/10.1111/j.1365-2621.1983.tb10790.x
  2. Nonaka M, Matsumura Y, Motoki M. Incorporation of lysine and lysine dipeptides into ${\alpha}s_1$-casein by $Ca^{2-}$-independent microbial transglutaminase. Biosci. Biotech. Biochem. 60: 131-133 (1996) https://doi.org/10.1271/bbb.60.131
  3. Ikura K, Sasaki R, Motoki M. Use of transglutaminase in quality improvement and processing of food proteins. Com. Agric. Food Chem. 2: 389-487 (1992)
  4. Motoki M, Segura K. Transglutaminase and its uses for food processing. Trends Food Sci. Tcchnol. 9: 204-210 (1998) https://doi.org/10.1016/S0924-2244(98)00038-7
  5. Babiker EE. Effect of transglutaminase treatment on the functional properties of native and chymotrypsin-digested soy protein. Food Chem. 70: 139-145 (2000) https://doi.org/10.1016/S0308-8146(99)00231-9
  6. Kuraishi C, Yamazaki K, Susa Y. Transglutaminase: its utilization in the food industry. Food Rev. Int. 17: 221-246 (2001) https://doi.org/10.1081/FRI-100001258
  7. Lorenzen PC, Neve H, Mautner A. Schlimme E. Effect of enzymatic cross-linking of milk proteins on functional properties of set-style yoghurt. Int. J. Dairy Technol. 55: 152-157 (2002) https://doi.org/10.1046/j.1471-0307.2002.00065.x
  8. O'Sullivan MM, Kelly A, Fox PF. Influence of transglutaminase treatment on some physico-chemical properties of milk. J. Dairy Res. 69: 433-442 (2002)
  9. Jeong JE, Hong YH. Characterization of transglutaminase treated milk product powders. Korean J. Food Sci. Technol. 37: 345-351 (2005)
  10. Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685 (1970) https://doi.org/10.1038/227680a0
  11. Sharma R, Zakora M, Qvists KB. Susceptibility of industrial ${\alpha}$-lactalbumin concentrate to cross-linking by microbial transglutaminase. lnt. Dairy J. 12: 1005-1012 (2002) https://doi.org/10.1016/S0958-6946(02)00122-X
  12. Aboumahmoud R, Savello P. Crosslinking of whey protein by transglutaminase. J. Dairy Sci. 73: 256-263 (1990) https://doi.org/10.3168/jds.S0022-0302(90)78668-7
  13. Chobert JM, Harb CB, Nicolas MG. Solubility and emulsifying properties of caseins and whey proteins modified enzymatically by trypsin. J. Agric. Food Chem. 36: 883-892 (1988) https://doi.org/10.1021/jf00083a002
  14. Kinekawa YI, Kitabatake N. Purification of ${\beta}$-lactoglobulin from whey protein concentrate by pepsin treatment. J. Dairy Sci. 79: 350-356 (1996) https://doi.org/10.3168/jds.S0022-0302(96)76371-3
  15. Reddy M, Kella KN, Kinsella JF. Structural and conformational basis of the resistance of ${\beta}$-lactoglobulin to peptic and chymotryptic digestion. J. Agric. Food Chem. 36: 737-741 (1988) https://doi.org/10.1021/jf00082a015
  16. Dalgalarondo M, Dufour E, Chobert JM, Bertrand-Harb C, Haertle T. Proteolysis of ${\beta}$-lactoglobulin and ${\beta}$-casein by pepsin in ethanolic media. Int. Dairy J. 5: 1-14 (1995) https://doi.org/10.1016/0958-6946(94)P1595-5
  17. Stapelfeldt, H., Petersen, PH, Kristiansen, KR, Qvist, KB, Skibates, LH. Effect of high hydrostatic pressure on the enzymic hydrolysis ${\beta}$-lactoglobulin B by trypsin, thermolysin and pepsin. J. Dairy Res. 63: 111-118 (1996) https://doi.org/10.1017/S0022029900031587
  18. El-Zahar, K, Sitohy, M, Choiset, Y, Metro, F, Haertle, T, Chobert, J-M. Peptic hydrolysis of ovine ${\beta}$-lactoglobulin and ${\alpha}$-lactalbumin exceptional susceptibility of native ovine ${\beta}$-lactoglobulin to pepsinolysis. Int. Dairy J. 15: 17-27 (2005) https://doi.org/10.1016/j.idairyj.2004.06.002
  19. Pelligrini A, Thomas U, Bramaz N, Hunziker P, von Fellenberg R. Isolation and identification of three bacteriocidal domains in the bovine ${\alpha}$-lactalbutmin molecule. Biochim. Biophys. Acta 1426: 439-448 (1999) https://doi.org/10.1016/S0304-4165(98)00165-2
  20. Miranda G, Pelissier, JP. Kinetic studies of in vivo digestion of bovine unheated skim-milk proteins in rat stomach. J. Dairy Res. 50: 27-36 (1983) https://doi.org/10.1017/S0022029900032490
  21. Schmidt DG, Poll KJ. Enzymatic hydrolysis of whey proteins. Hydrolysis of ${\alpha}$-lactalbutmin and ${\beta}$-lactoglobulin in buffer solutions by proteolytic enzymes. Neth. Milk Dairy J. 45: 225-240 (1991)