The Investigation on the Optimum Culture Conditions and the Ice Nucleating Activity of Bacterium Xanthomonas translucens KCTC 2751

Xanthomonas translucens KCTC 2751의 최적배양과 빙핵 활성 검토

  • Kim, Young-Mun (Department of Biotechnology & Bioengeering, Pukyong National University) ;
  • Kang, Sung-Il (Department of Biotechnology & Bioengeering, Pukyong National University) ;
  • Jang, Young-Boo (Department of Biotechnology & Bioengeering, Pukyong National University) ;
  • Jun, Byung-Jin (Department of Biotechnology & Bioengeering, Pukyong National University) ;
  • Kong, Jai-Yul (Department of Biotechnology & Bioengeering, Pukyong National University)
  • Published : 2006.04.01

Abstract

The optimum culture conditions for the ice nucleating activity and the cell growth of Xanthomonas translucens KCTC 2751 were investigated. The optimum initial pH and temperature for the cell growth and the ice nucleating activity were 6.5 and $25^{\circ}C$, respectively. The optimum culture medium for the ice nucleating activity was composed of 1.0% maltose, 1.4% yeast extract, 0.8% digested of gelatin, and 0.03% KCI in distilled water. Freezing operations carried out on distilled water showed that the degrees of supercooling were $-7.90^{\circ}C$ without ice nucleators, $-1.56^{\circ}C$ with silver iodide as a commercial ice nucleator, and $-1.36^{\circ}C$ when Xanthomonas translucens KCTC 2751 were added. During progressive freeze-concentration assays, the addition of Xanthomonas translucens KCTC 2751 led to lower saccharose concentrations in the crystals, while the cells led to higher saccharose concetrations in the concentrated phase.

본 실험에서는 기존의 실험 방법인 Vail에 의해 고안된 drop freezing method에 의하여 빙핵활성을 측정하는 방법보다 정확한 빙핵활성을 연구하기 위하여 thermocouple을 사용한 Thermoelectric thermometry를 응용하여 장치를 제작하여 과냉각도와 과냉각 시간을 보는 방법으로 빙핵활성을 측정하였다. 본 실험에 사용된 균주는 KCTC에서 분양받은 Xanthomonas translucens KCTC 2751을 이용하여 균체 생장과 빙핵활성의 최적 조건을 검토하였다. 탄소원의 영향에서는, 1.0%(w/v) maltose에서, 질소원으로는 1.4% yeast extract(w/v)와 0.8% digested of gelatin(w/v), 무기 염류에서는 0.03% KCI, 온도와 초기 pH는 각각 $25^{\circ}C$, 6.5에서 균체 생장이 뛰어났고 과냉각도가 가장 높게 나타났다. 따라서 본 연구의 최적 배양 조건은 초기 배양 조건 보다 균체의 양은 5배나 증가하였으며 과냉각도도 $-1.76^{\circ}C$에서 $-1.36^{\circ}C$로 상승하였다. 그리고 Xanthomonas translucens KCTC 2751를 첨가한 증류수의 과냉각도는 균체를 첨가하지 않은 증류수의 과냉각도$(-7.9^{\circ}C)$보다 $6.54^{\circ}C$ 높게 나타났으며, 상업적으로 사용되는 빙핵제인 silver iodide를 첨가한 증류수의 과냉각도$(-1.56^{\circ}C)$ 보다 $0.2^{\circ}C$ 높게 나타났다. 동결 농축 실험은 균체를 첨가한 saccharose 수용액은 200 min 경과 후에는 동결 실험 전에 비하여 약 2.5배가 증가하였고, 동결 부분의 용질 농도는 약 30% 정도 로 감소하였는데 비해 균체를 첨가하지 않은 수용액은 약 2.1배가 증가하였고, 동결 부분의 용질 농도는 약 40% 정도로 감소하였다.

Keywords

References

  1. Lindow SF. Arny DC, Upper CD. Distribution of ice nucleation-active bacteria on plants in nature. Appl. Environ. Microbiol. 36: 831-838 (1978)
  2. Lindow SE. Epophytic ice nucleation-active bacteria. Vol 1, pp. 335-362. In: Phytopathogenic prokaryotes. Academic Press, Inc., New York, NY, USA (1982)
  3. Maki LR, Galyon EL, Chang-Chien MM, Caldwell R. Ice nucleation induced by Pseudomonas syringae. Appl. Microbiol. 28: 456-459 (1974)
  4. Lindow SE, Arny DC, Upper CD. Bacterial ice nucleation: a factor in frost injury to plants. Plant Physiol. 70: 1084-1089 (1982) https://doi.org/10.1104/pp.70.4.1084
  5. Kozloff LM, Watanabe M. Ice nucleating activity of Pseudomonas syringae and Erwinia herbicola. J. Bacteriol. 153: 222-231 (1986)
  6. Maki LR, Willoughby KJ. Bacteria as biogenic sources of freezing nuclei. J. Appl. Meteorology 17: 1049-1053 (1978) https://doi.org/10.1175/1520-0450(1978)017<1049:BABSOF>2.0.CO;2
  7. Hitoshi O, Saeki Y, Tanishita J, Tokuyama T. Ice-nucleating activity of Pseudomonas fluorescens J. Ferment. Technol. 65: 693-697 (1987) https://doi.org/10.1016/0385-6380(87)90012-4
  8. Wantanabe M, Watanabe J. Screening, isolation, and identification of food originated compounds enhancing the ice-nucleation activity of Xanthomonas campestris. Biosci. Biotech. Biochem. 58: 64-66 (1994) https://doi.org/10.1271/bbb.58.64
  9. Kim HJ, Park J. Ice nucleation activities of ice nucleation-active bacteria sterilized with heat, pressure and irradiation, and their thermophysical effects on water. Korean J. Food Sci. Technol. 29: 326-336 (1997)
  10. Lindow SE. The role of bacterial ice nucleation in frost injury to plants. Annu. Rev. Phytopathol. 21: 363-384 (1983) https://doi.org/10.1146/annurev.py.21.090183.002051
  11. Schnell RC, Vail G. World-wide source of leaf-derived freezing nuclei. Nature 246: 212-213 (1973) https://doi.org/10.1038/246212a0
  12. Paul RP, Mannapperruma D. Development in Food Freezing. pp. 309-316, In: Biotechnology and Food Process Engineering. Schwarzberg HG, Rao MA (eds). Marcel Dekker, Inc., New York, NY, USA (1990)
  13. Ruggles JA, Nemecek-Marshall M, Fall R. Kinetics of appearance and disappearance of classes of bacterial ice support an aggregation model for ice nucleus assembly. J. Bacteriol. 175: 7216-7221 (1993) https://doi.org/10.1128/jb.175.22.7216-7221.1993
  14. Margaritis A, Bassi AS. Principles and biotechnological applications of bacterial ice nucleation. Crit. Rev. Biotechnol. 11: 277-295 (1991) https://doi.org/10.3109/07388559109069185
  15. Arai S, Watanabe M. Freeze texturing of food materials by ice-nucleation with the bacterium Erwinia ananas. Agric. Biol. Chem. 50: 169-175 (1986) https://doi.org/10.1271/bbb1961.50.169
  16. Kumeno K, Nakhama N, Honma K, Makino T, Watanabe M. Production and characterization of a pressure-induced gel from freeze-concentrated milk. Biosci. Biotech. Biochem. 57: 750 (1993) https://doi.org/10.1271/bbb.57.750
  17. Li J, Izquierdo MP, Lee TC. Effects of ice-nucleation active bacteria on the freezing of some model food systems. Int. J. Food Sci. Technol. 32: 41-49 (1997) https://doi.org/10.1046/j.1365-2621.1997.00380.x
  18. Lee MJ, Song KB. Application of ice nucleation active bacteria in freeze concentration of food products and characterization of ice nucleation protein. Food Sci. Biotechnol. 4: 164-168 (1995)
  19. Kong JY. The measurements of thermal diffusivity for Tofus. Ph.D. thesis, University of Tokyo, Tokyo, Japan. (1976)
  20. Kim MY, Bae SK, Kim JD, Kim JS, Kong JY. Thermodynamic properties of ice nucleation bacterium in freezing process. pp. 176-179. In: 9th International Food Machinery & Technology Exhibition, Tokyo, Japan (2002)
  21. Schooley JF. Thermometry. CRC Press, Baca Raton, FL, USA. pp. 172-186 (1986)
  22. National Institute of Standards and Technology. NIST ITS-90 thermocouple database. Available from: http://srdata.nist.gov/its90/download/type_t.tab, Accessed Jun. 12, 2004
  23. Bae SK. Effects of freezing conditions on the concentration-efficiency in the progressive freeze-concentration. J. Korean Soc. Food Nutr. 24: 984-989 (1995)
  24. Obata H, Tanaka T, Kawahara H, Tokuyama T. Properties of cell-free ice nuclei from ice nucleation-active Pseudomonas fluorescens KUIN-1. J. Ferment. Bioeng. 76: 19-24 (1993) https://doi.org/10.1016/0922-338X(93)90046-B
  25. Lee YW. Inhibition of supercooling of food components by ice nucleation active bacteria. Publishing department of Dong-Eui Technical School, Busan, Korea. pp. 269-278 (1999)
  26. Chen ML, Chiou TK, Jiang ST. Isolation of ice-nucleating active bacterium from mackerel and its peoperties. Fish. Sci. 68: 934-941 (2002) https://doi.org/10.1046/j.1444-2906.2002.00513.x