Quantitative Analysis of Citrate in Foods Using a Potentiometric Enzyme Biosensor

전위차법 효소 바이오센서를 이용한 식품의 구연산 정량분석

  • Kwon, Ji-Young (Department of Food Science and Nutrition, Kyungpook National University) ;
  • Kim, Mee-Ra (Department of Food Science and Nutrition, Kyungpook National University)
  • 권지영 (경북대학교 식품영양학과) ;
  • 김미라 (경북대학교 식품영양학과)
  • Published : 2006.04.01

Abstract

Potentiometric biosensor using flow injection analysis system was developed to determine citrate concentration in foods. Biosensor system consisted of sample injector, peristaltic pump, enzyme reactor, carbonate ion selective solid-state electrode, reference electrode, detector, and recorder. Enzyme reactor was prepared with immobilized citrate lyase and oxaloacetate decarboxylase. Carbonate ions produced through enzyme reactions of citrate were potentiometrically detected by ion selective electrode. Optimum conditions for biosensor system were investigated. Interference effect of major sugars and organic acids was less than 5% on citrate biosensor system. Citrate concentrations in fruit juices were determined by biosensor and gas chromatography. No significant difference was observed between two analytical methods. Results indicate citrate biosensor is useful in determining citrate concentration in foods.

Citrate Iyase(CL)와 oxaloacetate decarboxylase(OD)를 고정화하여 효소 반응기를 제작하고 효소반응으로 생성된 carbonate ion을 ion selective electrode를 이용한 전위차법 FIA system으로 식품에함유된 구연산의 농도를 측정하였다. 최적 센서 시스템의 조건은 CL과 OD을 같이 고정화시키는 방법으로 CL과 OD의 양이 각각 10 units, 60 units, 담체량은 0.3 g, carrier buffer 1(0.1 MTris buffer)은 pH 7.5, carrier buffer의 유속은 12 mL/hr으로 결정되었다. 최적 상태에서의 표준검량곡선은 $10^{-1}\;M-10^{-3}\;M$ 범위에서 직선적인 상관관계$(r^2=0.9986)$를 나타내었다. 당류와 유기산류에 대한 센서 시스템에 대한 방해효과를 측정한 결과 당류는 거의 저해효과를 보이지 않았으며 유기산의 경우도 저해 효과가 5% 미만으로 이들 물질에 의해 감응도가 크게 방해받지 않은 것으로 나타났다. 구연산 바이오센서와 GC를 사용하여 식품 시료에 함유된 구연산의 농도를 분석한 결과 두 방법간에 유의적인 차이가 없는 것으로 나타나 본 연구에서 구축한 구연산 바이오센서 시스템은 식품에 함유된 구연산 분석시 신뢰성 있는 결과를 주는 것으로 보여졌다.

Keywords

References

  1. Sethi RS. Transducer aspects of biosensors. Biosens. Bioelectron. 9: 243-264 (1994) https://doi.org/10.1016/0956-5663(94)80127-4
  2. Sohn BK. Sensor Engineering. lljinsa, Seoul, Korea. pp. 185-190 (1996)
  3. Palleschi G, Volpe G, Compagnone D, La Notte E, Esti M. Bioelectrochemical determination of lactic and malic acid in wine. Talanta 41: 917-923 (1994) https://doi.org/10.1016/0039-9140(94)E0044-R
  4. Park IS, Kim JH, Kim TJ, Noh BS. Simultaneous determination of lactose and lactic acid in yoghurt by biosensor using dual cathode elelctrode. Korean J. Biotechnol. Bioeng. 12: 8-16 (1997)
  5. Moellering H, Gruber W. Determination of citrate with citrate lyase. Anal. Biochem. 17: 369-376 (1996)
  6. Hikima S, Hasebe K, Taga M. New amperometric biosensor for citrate with mecury film electrode. Electroanalysis 4: 801-803 (1992) https://doi.org/10.1002/elan.1140040810
  7. Gajovic N, Warsinke A, Scheller FW. A novel multienzyme electrode for the determination of citrate. J. Chem. Tech. Biotechnol. 63: 337-344 (1995) https://doi.org/10.1002/jctb.280630406
  8. Shin JH, Yoon SY, Yoon IJ, Choi SH, Lee SD, Nam H, Cha GS. Potentiometric biosensors using immobilized enzyme layers mixed with hydrophilic polyurethane. Sens. Actuators B. 50: 19-26 (1998) https://doi.org/10.1016/S0925-4005(98)00151-8
  9. Kumaran, S, Tran-Minh C. Determination of organophosphorus and carbamate insecticides by flow injection. Anal. Biochem. 200: 187-194 (1992) https://doi.org/10.1016/0003-2697(92)90297-K
  10. Bradford MM. A rapid and sensitive method for the quantization of microgram quantities protein utilizing the principle of protein dye binding. Anal. Biochem. 72: 248-256 (1976) https://doi.org/10.1016/0003-2697(76)90527-3
  11. Evans A, James AM. Potentiometry and ion selective electrodes. Wiley, London, UK. pp. 198-206 (1987)
  12. Flores EF, Kline DA, Johnson AR. Fruits and fruit products: GLC determination of organic acids in fruits as their trimethylsilyl derivatives. J. Assoc. Off. Anal. Chem. 53: 17-20 (1970)
  13. Srere PA, Brigitte B, Brooks GC. Citrate lyase: A pantothenate-containing enzyme. Proc. Natl. Acade. Sci. USA. 69: 1201-120 (1972)
  14. Matsumoto K, Tsukatani T. Simultaneous quantitation of citrate and isocitrate in citrus juice by a flow-injection method based on the use of enzyme reactors. Anal. Chim. Acta. 32: 157-164 (1996) https://doi.org/10.1016/S0003-2670(00)88911-4
  15. Yoon SK, Lee JH, Yoo YJ, Rhee HK. Optimal control policy for multi-bed immobilized enzyme reactor. Korean Institude of Chemical Engineers. Spring Symposium Proceedings 208-209 (1988)
  16. Bilitewski U, Rohm I. Biosensors for process monitoring. pp. 441-447. In: Handbook of Biosensors and Electronic Noses: Medicine, food, and the environment. CRC Press, Inc., Boca Raton, FL, USA (1997)
  17. Singh M, Srere PA. The inactivation of citrate lyase from Aerobacter aerogenes. J. Biol. Chem. 246: 3847-3850 (1971)
  18. Shin JH, Sakong DS, Nam H, Cha, GS. Enhanced serum carbon dioxide measurements with a silicone rubber-based carbonate ion-selective electrode and a high-pH dilution buffer. Anal. Chem. 68: 221-225 (1996) https://doi.org/10.1021/ac9506037