Characteriatics of Single Cell Suspension of Garlic, Red Pepper and Cucumber Prepared by Protopectin Hydrolytic Enzymes

펙틴분해효소를 이용한 마늘, 고추와 오이의 단세포화물의 제조

  • Published : 2006.06.01

Abstract

Protopectinase (PPase) from Bacillus subtilis was used to investigate enzymatic maceration of vegetable tissues. Optimum concentration and pH of PPase were 0.75, 0.75, and 0.5%, and 5.0, 8.0, 7.0 for red pepper, garlic, and cucumber, respectively. Optimum shaking-rate, reaction time, and temperature of PPase were 250 rpm, 150 min, and $37^{\circ}C$, respectively. Yields of mechanically macerated red pepper, garlic, and cucumber were 45.8, 47.5, and 82.1%, whereas those treated with PPase were 81.8, 84, and 98%. Over 40% Vitamin C, the most unstable component during mechanical maceration, remained intact for 12 days after enzymatic treatment. Color differences $({\Delta}E)$ of mechanically macerated red pepper, garlic, and cucumber were 1.16, 2.86, and 3.27, whereas those of PPase-treated ones were 2.87, 7.68, and 5.22 after heat treatment at $100^{\circ}C$ for 20 min. Capsaicin content of mechanically macerated red pepper was 0.4 mg/100 g, whereas that treated with PPase was 1.32 mg/100 g. Viscosity of PPase-treated vegetable decreased slowly with increasing storage period, whereas that of mechanically macerated vegetable sharply decreased. These results indicate PPase treatment of vegetable could be better choice for preparation of high-values and functionally processed food and for extending preservation period.

채소류 가공 공정시 발생하는 영양성분의 손실, 색의 변화, 짧은 저장기간 등의 문제점을 해결하기 위한 방안으로 식물조직의 단세포를 유리시킬 수 있는 최적조건을 연구하였다. 즉 효소처리를 위한 최적 조건은 오이, 마늘, 고추에서 250 rpm, $37^{\circ}C$, 150분으로 나타냈다. 각 시료에 대한 효소 농도는 오이, 마늘, 고추 각각 0.5, 0.75, 0.75%를 보였으며, pH는 7.0, 8.0, 5.0이었다. 단세포화한 뒤 착즙율은 기계처리물에 비해 오이, 고추, 마늘, 각각 16, 36, 36.5% 이상의 수율 향상을 가져 왔다. 비타민 C 함량에서도 고추, 마늘 단세포화물이 약 9일 경과 후에도 80% 이상을 유지하고 있었으나, 기계처리물에서는 약 50% 정도를 감소하여, 저장기간이 지나도 비타민 C 감소폭이 적었다. 열처리 전후의 색도 변화에서도 ${\Delta}E$ 값이 1.16-3.27로 기계 처리물의 2.87-7.68보다 색도의 변화가 적어 외관상으로도 우수한 결과를 나타냈다. 고추의 capsaicin 최초 함량은 단세포화불이 1.77 mg/100 g로 기계처리물의 1.32 mg/100 g보다 높은 함량을 나타냈으며 저장 후에도 1.4 mg/100 g으로 기계처리물보다 높은 함량을 보였다. $-18^{\circ}C$에서 저장시 냉해동 안정성은 4 cycle 경과 후 단세포화물은 약 70%, 기계처리물은 약 20%의 점도를 유지하고 있었다.

Keywords

References

  1. Yang IS, Lee JM, Lee YE, Yoon S. Trends and feasibility of health-oriented con venience foods of Korean food industry. Korean J. Dietary Culture 13: 215-225 (1998)
  2. Jung EY, Lim YH, Park MS, Kim MW. A survey of the consumption of convenience foods. Korean J. Community Nutr. 7: 149-155 (2002)
  3. Jang GS, Development of food processing technology. Food Technol. Ind. 30: 87.94 (1997)
  4. Lee DH, Lee SC, Hwang Yl. Processing properties of kiwifruit freated with protopectinase. J. Korean Soc. Food Sci. Nutr. 29: 410-416 (2000)
  5. Biological active substances of food industry new processing technology - Focused on the membrane separation process. Food Technol. Ind. 31: 18..29 (1998)
  6. Shin HH, Pyun YR. Inactivation of lactobacillus plantarum by high valtage pulsed electronic fields treatment. Korean J. Food Sci. Technol. 29: 1175-1183 (1997)
  7. Kim DH, Beun MW. New processing technology of traditional fermented food using radical. Food Ind. Nutr. 6: 38-44 (2001)
  8. Byun MW, Lee SH. Effect of ozone treatment and gamma irradiation on the quality properties of dried-spirullina and dried-sea, tangle powders. Korean J. Food Sci. Technol. 29: 764-770 (1997)
  9. Shin JK, Byeon YL. Pasteurization of food by high intensity light pulse. Food Technol. Ind. 33: 27-35 (2000)
  10. Rombouts FM, Pilnik W. Utilization of pectic enzymes in food production. Dev. Food Sci. 2: 264-268 (1979)
  11. Lee SC, Hwang Yl. Recovery yields of protopectinase depending on treatments of organic solvents. Agr. Chem. Biotechnol. 40: 107-111 (1997)
  12. Lee SC, Hwang YI Effect of medium composition on protopectinase production from Bacillus subtilis EKII. Korean J. Appl. Microbiol. Biotechnol. 27: 378-384 (1999)
  13. Park YK, Kang YH. Effect of single cells of carrot and radish on the fecal excretion properties, mineral absorption rate and structure of small intestine and colon in rats. J. Korean Soc. Food Sci. Nutr. 33: 505-511 (2004) https://doi.org/10.3746/jkfn.2004.33.3.505
  14. Takashi N, Roque AH, Takuo S. Enzymatic maceration of vegetables with protopectinases. J. Food Sci. 60: 468-472 (1995) https://doi.org/10.1111/j.1365-2621.1995.tb09805.x
  15. KFDA. Food Index. Munyoung press. Korea. pp. 869-872 (2002)
  16. Vincent KA, Ken AB. Rapid sample preparation method for HPLC analysis of capsaicinoids in capsaicum fruits and oleoresions. J. Agric. Food Chem. 35: 777-779 (1987) https://doi.org/10.1021/jf00077a032
  17. Cheigh HS, Song ES, Jeon YS. Changes of chemical and antioxidative characteristics of chlorophylls in the model system of mustard leaf kimchi during fermentation. J. Korean Soc. Food Sci. Nutr. 28: 520-525 (1999)
  18. Jung SJ, Kim GE, Kim SH. The changes of ascorbic acid and chlorophylls content in gochu-jangachi during fermentation. J. Korean Soc. Food Sci. Nutr. 30: 814-818 (2001)
  19. Lee SC, Hwang YI. Cell separation of vegetable tissue by protopectinase. J. Korean Soc. Food Sci. Nutr. 26: 430-435 (1997)
  20. Park YK, Kang YH. Enzymatic maceration of vegetables with cell separating enzymes. Korean J. Postharvest. Sci. Technol. 7: 184-188 (2000)
  21. Chae SK, Oh MH. Standard Food Analysis. Ji-gu Publishing. Co., Seoul, Korea pp. 536-540 (2000)
  22. Park YK, Kang YH. Characteristics of suspension containing single cells from watermelon and muskmelon treated with cell separating enzymes. Korean J. Food Sci. Technol. 36: 58-63 (2004)
  23. Park YK, Kang YH. Macerating properities of fruits and vegetables for suspensions containing single cells. Korean J. Food Sci. Technol. 36: 64-68 (2004)