후숙 온도에 따른 오미자의 이화학적 특성 변화

Changes of Physicochemical Characteristics of Schizandra chinensis during Postharvest Ripening at Various Temperatures

  • 정평화 (전북대학교 응용생물공학부(식품공학)) ;
  • 김용석 (전북대학교 바이오식품 소재개발 및 산업화 연구센터) ;
  • 신동화 (전북대학교 응용생물공학부(식품공학))
  • Jeong, Pyeong-Hwa (Faculty of Biotechnology (Food Science & Technology Major), Chonbuk National University) ;
  • Kim, Yong-Suk (Research Center for Industrial Development of BioFood Materials, Chonbuk National University) ;
  • Shin, Dong-Hwa (Faculty of Biotechnology (Food Science & Technology Major), Chonbuk National University)
  • 발행 : 2006.08.01

초록

본 실험에 사용하였던 미숙성 오미자의 일반성분은 수분 $79.6{\pm}0.8%$, 조단백질 $1.7{\pm}0.5%$, 조지방 $1.2{\pm}0.1%$, 회분 $0.6{\pm}0.0%$이었다. 후숙기간 동안 착즙수율은 $4^{\circ}C$에서는 $55.3{\pm}0.6-56.3{\pm}0.6%$로서 큰 변화가 없었고, $25^{\circ}C$와 실온에서는 6-7% 정도 감소하였다. 가용성 고형분 함량은 $25^{\circ}C$와 실온 저장시 6일째 $12.2{\pm}0.15%$로서 가장 높게 나타났으며, 그 이후에는 약간 감소하였다. pH는 $4^{\circ}C$와 실온 저장시 후숙기간 동안 pH 2.76-2.81로서 큰 변화가 없었으며, $25^{\circ}C$ 저장시 초기 pH $2.81{\pm}0.02$에서 점차 낮아져 저장 8일째 pH $2.68{\pm}0.03$을 나타내었다. 적정산도는 $25^{\circ}C$와 실온 저장시 저장 6일째 각각 $7.49{\pm}0.03%$$7.20{\pm}0.03%$로서 가장 높게 나타났으며 그 이후 감소하였다. 색도의 변화는 $25^{\circ}C$와 실온 저장시 a값(적색도)은 초기 5.04에서 8일째 각각 6.77 및 7.65로 증가하였으며, L값(명도)은 후숙기간 동안 모든 처리구에서 증가하였다 유리당은 fructose(0.55%), glucose(0.56%), sucrose(0.50%)가 주로 검출되었으며, 후숙이 진행되면서 fructose와 glucose 함량은 증가하였고, sucrose 함량은 감소하였다. 총 유리당의 함량은 $25^{\circ}C$와 실은 저장시 초기 1.61%에서 저장 6일째까지 각각 2.53%와 2.13%로 증가하였고, 후숙 8일째에는 각각 1.94%와 2.08%로 감소하였다. 유기산은 후숙 초기에 citric acid, malic acid 및 succinic acid의 함량이 각각 0.17, 0.07 및 1.21%로서 succinic acid의 함량이 가장 많았고, 후숙기간 중 변화는 유리당의 경우와 비슷하였다. 오미자의 후숙을 위해서는 가용성 고형분 함량과 총 유리당 함량을 기준으로 할 때 $4^{\circ}C$에서 저장하는 경우 8일동안, 그리고 $25^{\circ}C$ 및 실온에서 저장하는 경우 6일 동안 후숙시키는 것이 바람직한 것으로 판단되었다.

This study was carried out to investigate the changes of physicochemical characteristics of Schizandra chinensis during postharvest ripening for 8 days at various temperatures. The juice yield of S. chinensis, which was 55.7% before postharvest ripening, was unchanged $(55.3{\pm}0.6-56.3{\pm}0.6%)$ at $4^{\circ}C$ storage, but was decreased at the level of 6 and 7% at $25^{\circ}C$ and room temperature (RT), respectively. During storage at $25^{\circ}C$ and RT, the titratable acidities of S. chinensis were the highest at $7.49{\pm}0.03$ and $7.20{\pm}0.03%$ after 6 days of postharvest ripening, respectively. During storage at $25^{\circ}C$ and RT, the soluble solid content of S. chinensis was increased from $8.2{\pm}0.1%$ at initial stage to a peak of $12.2{\pm}0.15%$ at 6-day storage, after which it decreased. L values (lightness) of S. chinensis were increased in all treatments during storage, and a values (redness) of $25^{\circ}C$ and RT treatments were increased from 5.04 initially to 6.77 and 7.65 at 8-day storage, respectively. The major free sugars of S. chinensis were fructose (0.55%), glucose (0.56%), and sucrose (0.50%). During storage at $25^{\circ}C$ and RT, the fructose and glucose contents were continually increased with increasing storage period, while the sucrose contents decreased after 6-day storage. Major non-volatile organic acids of S. chinensis were succinic (1.21%), citric (0.17%), and malic (0.07%) acids. Changes in the organic acids contents of S. chinensis at various temperatures showed a similar tendency to that of the free sugars. We estimated that the best conditions for the postharvest ripening of S. chinensis were 8 days at $4^{\circ}C$ storage, and 6 days at $25^{\circ}C$ and RT.

키워드

참고문헌

  1. Jung GT, Ju IO, Choi JS, Hong JS. The antioxidativc, antimicrobial and scavenging effect of Schizandra chinensis Ruprecht (Omija) seed. Korean J. Food Sci. Technol. 32: 928-935 (2000)
  2. Shin MG. Clinical Herbal Pharmacology. Namsandang Publishing Co., Seoul, Korea. pp. 241-246 (1986)
  3. Kim JE, Chun HJ. A study on making jelly with Omija extract. Korean J. Soc. Food Sci. 6: 17-24 (1990)
  4. Oh SL, Kim SS, Min BY, Chung DH. Composition of free sugar, free amino acid, non-volatile organic acid and tannins in the extracts of L. chinensis M., A. acutiloba K., S. chinensis B. and A. sessiliflorum S. Korean J. Food Sci. Technol. 22: 76-81 (1990)
  5. Zhu M, Lin KF, Yeung RY, Li RC. Evaluation of the protective effects of Schizandra chinensis on phase I drug metabolism using a $CCI_4$ intoxication model. J. Ethnopharmacol. 67: 928-935 (2000)
  6. Molokovskii DS, Davydov VV, Tiulenev VV. The action of adaptogenic plant preparations in experimental alloxan diabetes. Probl. Endokrinol. 35: 82-87 (1987)
  7. Hsu HY, Chen YP, Shen SJ, Hsu CS, Chen CC, Chang HC. Oriental Material Medica. Oriental Healing Arts Institute, California, USA. p. 624 (1986)
  8. Kwak EJ, An JH, Lee HG, Shin MJ, Lee YS. A study on physicochemical characteristics and sensory evaluation according to development of herbal sauces of jujube and omija. J. Korean Soc. Food Sci. Nutr. 31: 7-11 (2002) https://doi.org/10.3746/jkfn.2002.31.1.007
  9. Yang HC, Lee JM, Song KB. Anthocyanins in cultured Omija (Schizandra chinensis Baillon) and its stability. J. Korean Agric. Chem. Soc. 25: 35-43 (1982)
  10. Kang KC, Park JH, Baek SB, Jhin HS, Rhee KS. Optimization of beverage preparation from Schizandra chinensis Baillon by response surface methodology. Korean J. Food Sci. Technol. 24: 74-81 (1992)
  11. Oh JK, Kim BJ, Shin YO, Jung HJ, The efficacy of sports drink by using Schizandra chinensis. Korean J. Phys, Educ. 41: 617-633 (2002)
  12. Mok CK. Quality improvement of spray-dried Omija (Schizandra chinensis Baillon) tea powder by roasting of Omija and by adding of grape juice. Food Eng. Prog. 9: 125-132 (2005)
  13. Mok CK, Song KT, Na YJ. Park JH, Kwon YA, Lee SJ. Effects of roasting and grating on extraction of Omija (Schizandra chinens is Baillon). Food Eng. Prog. 5: 58-63 (2001)
  14. Lee SJ, Kwon YA, Mok CK, Park JH. Interfacial properties of spray-dried Omija (fruit of Schizandra chinensis) tea. Food Eng. Prog. 4: 51-54 (2000)
  15. Kim JS. Food Refrigeration. Hyoil Books, Seoul, Korea. pp. 245-286 (2003)
  16. Park DM, Kim WS, Kim WS. The fruit growth curve and changes in carbohydrates of the fruit of four pear cultivars (Pyrus pyrifolia). J. Korean Soc. Hort. Sci. 25: 45-49 (1984)
  17. Hong JH, Lee SK. Comparison of ripening characteristics of vine- and room-ripened tomato fruit. J. Korean Hort. Sci. 40: 529-532 (1999)
  18. Park SW, Lee JW, Kim YC, Kim KY, Hong SJ. Changes in fruit quality of tomato 'Dotaerang' cultivar during maturation and postharvest ripening. Korean J. Hort. Sci. Technol. 22: 381-387 (2004)
  19. Park SE, Ko E, Lee MR, Hong SJ. Fruit quality of 'York' tomato as influenced by harvest maturity and storage temperature. Korean J. Hort. Sci. Technol, 23: 31 -37 (2005)
  20. Choi YH, Cheong YK, Park KH, Park MS. Change of quality in dried Omija (Schizandra chinensis Baillon) during storage. Korean J. Postharvest Sci. Technol. 8: 351-355 (2001)
  21. AOAC. Official Method of Analysis of AOAC Intl. 16th ed. Method 991.43. Association of Official Analytical Chemists, Arlington, VA, USA (1995)
  22. Sadler GO. Titratable acidity. pp. 83-94. In: Introduction to the Chemical Analysis of Foods. Nielson SS (ed). James and Bartlett Publisher, London, UK (1994)
  23. Lee HW, Shin DH, Lee WC. Morphological and chemical characteristics of Mulberry (Morus) fruit with varieties. Korean J. Seric. Sci. 40: 1-7 (1998)
  24. SAS Institute, Inc. SAS User's Guide. Statistical Analysis Systems Institute, Cary, NC, USA (1990)
  25. Kim KI, Nam JH, Kwon TW. On the proximate composition, organic acid and anthocyanins of Omija, Schizandra chinensis Baillon. Korean J. Food Sci. Technol. 5: 178-182 (1973)
  26. Kwon YJ, Yang HC. A study on chemical composition of apple produced in Jeonju region (III). -Changes in sugar content-. Bull. Chonbuk National Univ. 18: 53-58 (1976)
  27. Krotov G, Helson V. Carbohydrate metabolism of Mclntosh apple during their development on the free and in cold storage. Can. J. Res. 24: 126-131 (1946)
  28. Moon YJ, Park S, Sung CK. Effect of ethanolic extract of Schizandra chinensis for the delayed ripening Kimchi preparation. Food. Sci. Nutr. 16: 7-14 (2003)