Change of Korean Ginseng Components with High Temperature and Pressure Treatment

고온고압처리에 의한 인삼의 성분 변화

  • Yang, Seung-Joon (Chung Cheong Buk-do Institute of Health and Environment) ;
  • Woo, Koan-Sik (Department of Food Science and Technology, Chungbuk National University) ;
  • Yoo, Jeong-Sik (Department of Food Science and Technology, Chungbuk National University) ;
  • Kang, Tae-Su (Department of Food Science and Biotechnology, Chungbuk Provincial University) ;
  • Noh, Young-Hee (Department of Beauty Industry, Konyang University) ;
  • Lee, Jun-Soo (Department of Food Science and Technology, Chungbuk National University) ;
  • Jeong, Heon-Sang (Department of Food Science and Technology, Chungbuk National University)
  • 양승준 (충청북도보건환경연구원) ;
  • 우관식 (충북대학교 식품공학과) ;
  • 유정식 (충북대학교 식품공학과) ;
  • 강태수 (충북과학대학 바이오식품생명과학과) ;
  • 노영희 (건양대학교 미용학과) ;
  • 이준수 (충북대학교 식품공학과) ;
  • 정헌상 (충북대학교 식품공학과)
  • Published : 2006.08.01

Abstract

Korean ginseng was heat treated at various temperatures (110, 120, 130, 140 and $150^{\circ}C$) and times (1, 2, 3, 4, and 5 hr). The heat treated ginseng extract was analyzed for the total polyphenol content, total flavonoid content, DPPH free-radical scavenging, 5-HMF and ginsenoside. The total phenolics and flavonoid content increased with increasing treatment temperature and time. The highest total phenolics content was 29.46 mg/g (d.b) in $150^{\circ}C$ for 1hr (control: 2.68 mg/g). The highest total flavonoid content was 4.75mg/g (d.b) in $150^{\circ}C$ for 2hr (control: 0.39 mg/g). The antioxidant activity increased until $140^{\circ}C$ for 3 hours. An extension of the treatment time did not have any effect, and the antioxidant activity decreased at temperatures higher than $150^{\circ}C$ for more than 2 hours. The content of ginsenoside $Rg_1$, Re, $Rb_2$ and Rb3 rapidly decreased with increasing treatment temperature and time. Ginsenoside $Rg_3$ and $Rh_2$ were newly produced, or their contents increased with increasing treatment temperature and time.

인삼을 처리온도 및 처리시간을 변수로 하여 열처리한 다음 80% 메탄올로 추출하여 성분 및 생리활성 변화를 분석하였다. 총 폴리페놀 함량은 고온고압처리에 따라 증가하다가 $140^{\circ}C$, 4시간 이후에 감소하였으며, $150^{\circ}C$, 1시간 처리구에서 29.46mg/g으로 가장 높은 함량을 나타내었다. 총 플라보노이드 함량은 고온고압처리에 따라 증가하다가 $150^{\circ}C$에서는 2시간 처리구에서 4.75mg/g으로 가장 높은 함량을 나타내었다. $IC_{50}$은 처리온도와 시간이 증가할수록 감소하여 항산화활성이 무처리구(17.68mg/g)보다 증가한 것을 알 수 있었으며, 가장 활성이 높은 처리구는 $140^{\circ}C$, 3시간 처리구로 0.22mg/g으로 나타났다. 4년근 인삼의 조사포닌 함량은 1.18%이었으며, 고온고압처리에 따라 ginsenoside는 대부분 처리온도가 높아질수록, 처리시간이 길어질수록 감소하는 경향을 보였다. $Rg_1$, Re, $Rb_2,\;Rb_3$은 비교적 낮은 온도에서는 안정하였으나 $130^{\circ}C$ 이상의 온도에서는 불안정하여 감소하였다. Rf는 열처리에 비교적 안정하였으며, $Rg_3,\;Rh_2$는 고온고압처리에 의해 새로이 생성되거나 함량이 증가하여 최대 생성 조건은 $130^{\circ}C$에서는 4-5시간, $140^{\circ}C$에서는 2-4시간, $150^{\circ}C$에서는 2시간으로 나타났다.

Keywords

References

  1. Park CK, Jeon BS, Yang JW. The chemical components of korean ginseng. Food Ind. Nutr. 8: 1226-3338 (2003)
  2. Chang HK. Effect of processing methods on the chemical composition of Panax ginseng leaf tea. Korean J. Food Nutr. 18: 63-71 (2005)
  3. Lim WS. Effects of interactions among age. cultivation method (location) and population on ginsenoside content of wild Panax quinquefolium L. one year after transplanting from wild. Korean J. Med. Crop Sci. 13: 254-261 (2005)
  4. Wang W, Zhao ZJ. Xu YF, Qian XH, Zhong JJ. Efficient elicitation of ginsenoside biosynthesis in cell cultures of Panax notoginseng by using self-chemically-synthesized jasmonates. Biotechnol. Bioprocess Eng. 10: 162-265 (2005) https://doi.org/10.1007/BF02932587
  5. Kim MR, Kim IH, Shim JH. The analysis of volatile components of fresh ginseng, red ginseng and white ginseng by solvent free solid injector (SFSI) techniques. Korean J. Environ. Agric. 24: 164-168 (2005) https://doi.org/10.5338/KJEA.2005.24.2.164
  6. Woo KS, Jang KI, Kim KY, Lee HB, Jeong HS. Antioxidative activity of heat treated licorice (Glycyrrhiza uralensis Fisch) extracts. Korean J. Food Sci. Technol. 38: 355-360 (2006)
  7. Kwon OC, Woo KS, Kim TM, Kim DJ, Hong JT, Jeong HS. Physicochemical characteristics of garlic (Allium sativum L.) on the high temperature and pressure treatment. Korean J. Food Sci. Technol. 38: 331-336 (2006)
  8. Hwang IG, Woo KS, Kim TM, Kim DJ, Yang MH, Jeong HS. Change of physicochemical characteristics of Korean pear (Pyrus pyrifolia Nakai) juice with heat treatment conditions. Korean J. Food Sci. Technol. 38: 342-347 (2006)
  9. Park JH. Sun ginseng-a new processed ginseng with fortified activity. Food Ind. Nutr. 9: 23-27 (2004)
  10. Dewanto V, Wu X, Adom KK, Liu RH. Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity. J. Agric. Food Chem. 50: 3010-3014 (2002) https://doi.org/10.1021/jf0115589
  11. Choi Y, Lee SM, Chun J, Lee HB, Lee J. Influence of heat treatment on the antioxidant activities and polyphenolic compounds of Shiitake (Lentinus edodes) mushroom. Food Chem. 99: 381-387 (2006) https://doi.org/10.1016/j.foodchem.2005.08.004
  12. Dewanto V, Xianzhong W, Liu RH. Processed sweet corn has higher antioxidant activity. J. Agric. Food Chem. 50: 4959-4964 (2002) https://doi.org/10.1021/jf0255937
  13. Jeong SM, Kim SY, Kim DR, Jo SC, Nam KC, Ahn DU, Lee SC. Effect of heat treatment on the antioxidant activity of extracts from citrus peels. J. Agric. Food Chem. 52: 3389-3393 (2004) https://doi.org/10.1021/jf049899k
  14. Jia Z, Tang M, Wu J. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem. 64: 555-559 (1999) https://doi.org/10.1016/S0308-8146(98)00102-2
  15. Tepe B, Sokmen M, Akpulat HA, Sokmen A. Screening of the antioxidant potentials of six salvia species from Turkey. Food Chem. 95: 200-204 (2006) https://doi.org/10.1016/j.foodchem.2004.12.031
  16. Bae SK, Lee YC, Kim HW. The browning reaction and inhibition on apple concentrated juice. J. Korean Soc. Food Sci. Nutr. 30: 6-13 (2001)
  17. Yu KW. Production of the useful metabolites through bioreactor culture of Korean ginseng (Panax ginseng C.A Meyer). PhD thesis, Chungbuk National University, Cheongju, Korea (2002)
  18. Turkmen N, Sari F, Velioglu YS. The effect of cooking methods total phenolics and antioxidant activity of selected green vegetables. Food Chem. 93: 713-718 (2005) https://doi.org/10.1016/j.foodchem.2004.12.038
  19. Manzocco L, Calligaris S, Mastrocola D, Nicoli MC, Lerici CR. Review of non-enzymatic browning and antioxidant capacity in processed foods. Trends Food Sci. Technol. 11: 340-346 (2001) https://doi.org/10.1016/S0924-2244(01)00014-0
  20. Lee CR, Whang WK, Shin CG, Lee HS, Han ST, Im BO, Ko SK. Comparison of ginsenoside composition and contents in fresh ginseng roots cultivated in Korea, Japan, and China at various ages. J. Korean Food Sci. Technol. 36: 847-850 (2004)
  21. Ko SK, Lee CR, Choi YE, Im BO, Sung JH, Yoon KR. Analysis of ginsenosides of white and red ginseng concentrates. J. Korean Food Sci. Technol. 35: 536-539 (2003)
  22. Kim YS, Jin SH. Ginsenoside $Rh_2$ induces apoptosis via activation of caspase-1 and -3 and up-regulation of bax in human neuroblastoma. Arch. Pharm. Res. 27: 834-839 (2004) https://doi.org/10.1007/BF02980175