Physicochemical Properties and White Layer Cake Making Potentialities of Wheat Flour and Soy Protein Isolate Blends

분리 콩단백 복합분의 이화학적 특성과 white Layer cake 제조적성

  • Published : 2006.08.01

Abstract

The protein contents of soy protein isolate (SPI) and soft wheat flours were 83.5% and 8.5%, respectively. The addition of SPI increased the protein content but decreased the sedimentation value. Alkaline water retention capacity (AWRC) value increased with SPI addition and was highly correlated with protein content. Increasing SPI flour content significantly decreased the maximum, minimum and final viscosities. Mixograph peak time was positively correlated with protein content and AWRC. The PH and specific gravity of the cake batter increased with increasing SPI content. The SPI addition reduced the loaf and specific loaf volume compared with soft wheat flour. The lightness of the cake crust decreased, while the redness and yellowness increased, with SPI flour addition. SPI addition resulted in a decrease of overall acceptability, but an increase in hardness.

본 연구는 아이소플라본 등 여러 생리활성 물질을 가지고 있는 콩 단백질의 섭취를 증가시키기 위하여 분리 콩단백(soy protein isolate)을 첨가한 복합분의 이화학적 특성, rheology특성, 제품적성 등을 검토하였다. 공시된 시료의 단백질 함량은 분리 콩단백이 83.5%로서 박력분보다 9.8배 높았다. 박력분에 분리 콩단백을 3-24% 첨가하였을 때, 단백질 함량은 28.5% 증가하였으며, 침전가는 13.5 mL 감소하였다. 알칼리수 흡수능은 분리 콩단백의 첨가량이 증가함에 따라 증가하는 경향을 보였으며, 알칼리수 흡수능과 단백질 함량과는 고도의 정의 상관이, 그리고 침전가와는 부의 상관이 있었다. Rapid visco analyser(RVA)에 의한 호화특성을 보면, initial pasting temperature는 분리 콩단백 첨가구의 경우 $74.8-84.4^{\circ}C$로서 분리 콩단백 첨가량이 증가함에 따라 증가되었다. 반면에 최대, 최소 및 최종점도는 분리 콩단백의 첨가량이 증가함에 따라서 현저하게 감소되었다. RVA 특성과 단백질 함량, 침전가, 알칼리수 흡수능과는 고도의 정 또는 부의 상관이 있었다. 분리 콩단백의 첨가량에 따른 mixograph 특성을 보면, 분리 콩단백 첨가의 정우 peak 시간은 18% 첨가 시부터, peak 높이는 21% 첨가 시부터 유의적인 차이가 있었다. White layer cake batter의 pH와 비중은 분리 콩단백 첨가량이 증가함에 따라 다소 증가하는 경향을 보였다. White layer cake의 부피와 비용적은 분리 콩단백의 첨가량이 증가함에 따라 감소하는 경향을 보였으나 그 변화폭은 크지 않았다. White layer cake의 부피지수는 분리 콩단백의 첨가량이 증가함에 따라서 감소하였으며, 대칭지수도 분리 콩단백을 첨가함으로써 감소하는 경향을 보였다. Mixograph peak 시간과 케이크의 부피와는 정의 상관$(r=0.738^{**})$이 없었다. Cake crust $L^*$값은 분리 콩단백 첨가군이 57.7-51.4로서 분리 콩단백 첨가량이 증가함에 따라서 감소하는 경향을 보였으며, $a^*$값과 $b^*$값은 분리 콩단백의 첨가량이 증가함에 따라 증가하였다. White layer cake의 관능검사 결과 케이크 제조 시 분리 콩단백의 첨가량은 9%가 가능할 것으로 사료되며, 케이크의 전체적인 기호도와 케이크의 부피와는 고도의 정의 상관이 있었다. 케이크의 경도는 분리 콩단백 첨가량이 증가함에 따라서 증가하였다.

Keywords

References

  1. Kennedy AR. The evidence for soybean products as cancer preventive agents. J. Nutr. 125: 733s-743s (1995)
  2. Jeon KS. Changes in isoflavone contents of soybeans and soybean products as affected by cooking conditions. MS thesis, Seoul National University, Seoul, Korea (1997)
  3. King RA, Broadbent JL, Head RJ. Absorption and excretion of the soy isoflavone genistein in rats. J. Nutr. 126: 176-182 (1995)
  4. Fran K. That's using the old bean. Food Technol. 52(6): 42-43 (1998)
  5. Eldrige AC, Kwolek WF. Soybean isoflavones; Effect of environment and variety on composition. J. Agric. Food Chem. 31: 394-396(1983) https://doi.org/10.1021/jf00116a052
  6. Kim SO. Research and industrial trend of the functional components of soybean. Food Sci. Ind. 39: 2-10 (2006)
  7. Chang HG. Food Processing Technology and Preservation. Life Sci. Publishing Co., Seoul, Korea. pp. 151-163 (2006)
  8. Kohn S. An update of the U.S. baking industry. Cereal Foods World 45: 94-97 (2000)
  9. Fellers DA, Mecham DK, Bean MM, Hanamoto MM. Soy-fortified wheat flour breads. I. Composition and properties. Cereal Foods World 21 : 75-79 (1976)
  10. Bean MM, Hanamoto MM, Mecham DK, Ciuadagni Dei, Fellers DA. Soy-fortified wheat-flour blends. II. Storage stability of complctc blends. Cereal Chern. 53: 397-404 (1976)
  11. Bean MM, Hanamoto MM, Nishita KD, Mecham DK, Fellers DA. Soy-fortified wheat-flour blends. IV. Storage stability with several surfactant additives. Cereal Chem. 54: 1159-1170 (1977)
  12. Aidoo ES. High-protein bread: Interactions of wheat proteins and soy proteins with surfactants in doughs and in model systems. PhD thesis, Kansas State University. Manhattan, KS, USA (1972)
  13. Chung OK, Tsen CC, Robinson RJ. Functional properties of surfactants in breadmaking. III. Effect of surfactants and soy flour on lipid binding in bread. Cereal Chem. 58: 220-226 (1981)
  14. Khan MN, Lawhon JT. Baking properties of oilseed protein and isolates produced with industrial membrane system. Cereal Chem. 56: 433-436 (1979)
  15. Tsen CC, Hoover WJ, Phillips D. Using sodium-stearoyl-2-lactylate to produce high-protein breads. Bakers Dig. 45: 20-25 (1971)
  16. Khan MN, Rhee KC, Rooney LW, Cater CM. Breadmaking properties of aqueous processed peanut protein concentrates. J. Food Sci. 40: 580-586 (1975) https://doi.org/10.1111/j.1365-2621.1975.tb12532.x
  17. Sloan AE, Top 10 trends to watch and work on: 2003. Food Technol. 57(4): 30-50 (2003)
  18. Jung DS, Lee FZ, Enu JB. Quality properties of bread made of wheat flour and black rice flour. Korean J. Food Sci. Technol. 34: 232-237 (2002)
  19. Lee YT, Chang HG. Effect of waxy and normal hull-less barley flours on bread-making properties. Korean J. Food Sic. Technol. 35: 918-923 (2003)
  20. Cho MK, Lee WJ. Preparation of high-fiber bread with barley flour. Korean J. Food Sci. Technol. 28: 702-706 (1996)
  21. Kim HS. Bakery industry of Korea. Food Ind. 180: 10-26 (2004)
  22. AACC. Approved Method of the AACC. 10th ed. Method 02-52, 10-90, 22-08, 30-10, 32-10, 44-19, 46-13, 54-40A, 56-10, 56-61A, 76-13. American Association of Cereal Chemists, St. Paul, MN, USA (2000)
  23. Collins JL, Post AR. Peanut hull flour as a potential source of dietary fiber. J. Food Sci. 46: 445-448 (1981) https://doi.org/10.1111/j.1365-2621.1981.tb04881.x
  24. Merritt PP, Stamberg OE. Some studies on flour absorption. Cereal Chem. 18: 672-632 (1941)
  25. Yamazaki WT. An alkaline water retention capacity test for the evaluation of cookie baking potentialities of soft winter wheat flours. Cereal Chem. 30: 242-249 (1953)
  26. Noguchi A, Kugimiya W, Haque Z, Saio K. Physical and chemical characteristics of extruded rice flour and rice flour fortified with soybean protein isolate. J. Food Sci. 47: 240-245 (1981) https://doi.org/10.1111/j.1365-2621.1982.tb11069.x
  27. Sollars WF, Rubenthaler GL. Flour fractions affecting farinograph absorption. Cereal Chem. 52: 420-427 (1975)
  28. Chang HG. Quality characteristics of sponge cake containing various levels of millet flour. Korean J. Food Sci. Technol. 36: 952-958 (2004)
  29. Miarahi S, Zimmeramann Z, Cogan U. The use of isolated soybean protein in bread. Cereal Chem. 44: 193-196 (1967)
  30. Finney KF, Shorgren MD. A ten-gram mixograph for determining and predicting functional properties of wheat flour. Bakers Dig. 46: 32-36 (1972)
  31. Kyung MS, Chang HG. Lee YT. Effects of emulsifiers on the properties of white layer cakes prepared from Geurumil flour. J. Korean Soc. Food Sci. Nutr. 30: 877-881 (2001)
  32. Vaisey-Genser M, Ylimaki G, Johnston B. The selection of levels of canola oil, water, and an emulsifier system in cake formulations by response-surface methodology. Cereal Chem. 64: 50-54 (1987)
  33. Choi YS. Preparation of bread supplemented with defatted soy flour and the effect of sodium stearyl-2-lactylate on the physicochemical properties of dough and product qualities of bread. PhD thesis, Sejong University, Seoul, Korea (2003)