DOI QR코드

DOI QR Code

Formation of Brushite (CaHPO4 · 2H2O) in the Oyster Extracts

굴 엑기스에서 결정물질 Brushite(CaHPO4 · 2H2O)의 생성

  • Lee, Jong-Soo (Division of Marine Life Science and Technology, Institute of Marine Industry, Gyeongsang National University) ;
  • Yoon, So-Mi (Division of Marine Life Science and Technology, Institute of Marine Industry, Gyeongsang National University) ;
  • Jang, Jun-Ho (Division of Marine Life Science and Technology, Institute of Marine Industry, Gyeongsang National University) ;
  • Lim, Chi-Won (NFRDI) ;
  • Choi, Kwang-Yeol (Sam-Duck Food Co., Ltd.)
  • 이종수 (경상대학교 해양생명과학부, 해양산업연구소) ;
  • 윤소미 (경상대학교 해양생명과학부, 해양산업연구소) ;
  • 장준호 (경상대학교 해양생명과학부, 해양산업연구소) ;
  • 임치원 (국립수산과학원) ;
  • 최광열 (삼덕물산(주))
  • Published : 2006.07.31

Abstract

Small yellowish brown crystals were found in some concentrated oyster extracts which prepared by heating with the drip and washed water of boiled oyster in oyster processing factories. We collected those crystals by filtering the oyster extracts and analysed X ray diffraction (XRD), scanning electron microscopy (SEM) and minerals by ICP. Those were composed of moisture (8.1%), organic materials (21.6%) and inorganic materials (70.2%). Those major inorganic materials were determined as Ca (53.8%) and P (43.8%), from the ICP and elucidated those crystal as brushite $(CaHPO_4{\cdot}2H_2O)$ by XRD and SEM. Organic materials contained crude protein (33.7%) consisting of 7 amino acids. It is presumed that brushite may be formed by the reaction of excess Ca with P in the oyster extracts during concentrating process under higher temperature.

굴 자숙시 사용한 세척수를 농축하여 만든 굴 엑기스 제품에서 발생한 미세 결정물질을 분리하여 성분의 본체를 규명하고, 발생 원인을 추정하였다. 결정물질은 수분 8.1%, 유기물이 21.6%, 무기물 70.2%로 되어 있었으며, 유기물은 taurine, phosphoserine 등 9개의 유리아미노산을 함유하고 있었고, 무기물의 주성분은 ICP에 의하여 분석한 결과, Ca이 54.8%, P이 43.8%로 이 두 성분이 전체 무기질의 98.6%를 차지하였다. XRD 분석결과와 SEM 사진의 분석에 의하여 이 결정물질은 Ca와 인산이 결합된 $brushite(CaHPO_4{\cdot}2H_2O)$로 동정되었으며, 10 mg까지는 마우스에 독성을 나타내지 않았다. 결정물질이 생성된 굴 엑기스에서 결정물질을 제거한 다음 남은 엑기스와 결정물질이 생성되지 않은 굴 엑기스의 칼슘이나 인 등의 함량이 비슷하여, 이 결정물질이 원래 굴의 성분으로 함유되어 있거나 굴 엑기스의 제조과정 중에 만들어진 소량의 brushite가 농축과정에서 점차 농도가 진하여지고, 저장중 굴 엑기스 내의 다른 성분이나 외부의 요인들에 의하여 결정으로 성장하고, 이렇게 성장된 결정이 황갈색으로 착색된 굴 엑기스 내에서 혼재하여 확인되지 않고 있다가 비중 차이에 의하여 저장 중에 굴 엑기스를 담은 용기의 바닥에 침전된 것으로 추정된다.

Keywords

References

  1. Kimura T. 1969. Study on greening of canned oysters. Bull Jap Soc Sci Fish 35: 67-76 https://doi.org/10.2331/suisan.35.67
  2. Hata M, Nakamura K, Fujiwara H. 1982. Brick-red coloration of oyster Crassostra gigas. Bull Jap Soc Sci Fish 48: 975-979 https://doi.org/10.2331/suisan.48.975
  3. Hatano R, Iita H, Seki S, Takahashi K. 1990. Occurrence of unacceptable taste and coloring of giant pacific oyster. Nippon Suisan Gakkaishi 56: 1481-1484 https://doi.org/10.2331/suisan.56.1481
  4. Lee JH. 2004. Produce and treatment status of oyster shells. Symposium for effective utilization of oyster shells and its methods. Institute of Marine Industry, Geongsang National University. p 7-21
  5. Choi SK. 2000. Sauces -Theory and Practice-. Hyungsul Publishing Co., Seoul, Korea. p 156
  6. Tanaka T. 1981. Nutritional supplementary food. ECO Publishing Co., Tokyo, Japan. p 4-152
  7. Lee BM. 2002. Accessment of 3-monochloro-1,2-propanediol (3-MCPD). Korea J Toxicol Pub Health 18: 1-11
  8. Internet. 2006. http://enc.daum.net/dic100/viewContents.do? &m=all&articleID
  9. Seo MS, Han HY, Kashima I, Kato S, Hiraoka T. 1986. A study of karst and cave minerals in Mun Gyeong Gun area. Researches of Geography 11: 71-82
  10. Kim JH, Park JK, Kim HJ, Kim YK, Jung YB. 2000. Evaluation of biochemical risk factors and relative supersaturation in patients with recurrent nephrolithiasis. Korean J Nephrology 19: 265-270
  11. Pak CYC, Poindexter JR, Peterson RD, Heller HJ. 2004. Biochemical and physicochemical presentations of patients with brushite stones. J Urology 171: 1046-1049 https://doi.org/10.1097/01.ju.0000104860.65987.4a
  12. Shin WD, Choi YJ. 1986. X-ray diffractometric study on the structure of inorganic compounds of human dental calculi. J Kor Aca Dental Health 10: 91-98
  13. El-Ghannam AR. 2004. Advanced bioceramic composite for bone tissue engineering: Design principles and structure-bioactivity relationship. J Biomedical Materials Research - Part A 69: 490-501
  14. Kim SK. 1998. Development of new materials from fisheries wastes, Recovery and utilization of Calcium from oyster shell; Development of bioceramic from natural hydroxy- apatite originated fish borne. Final Report of Ministry of Agriculture. p 70
  15. Kim YH, Lim YM, Jang BK. 1997. Synthesis of the refined calcium phosphate for bone china porcelain from oyster shell. J Korean Solid Wastes Eng Soc 14: 623-631
  16. Park YH, Jang DS, Kim SB. 1994. Utilization and processing of fisheries. Hyungsul Publishing Co., Seoul, Korea. p 611