DOI QR코드

DOI QR Code

Effects of Laminaran from Eisenia bicyclis on Serum Lipids in Rats Fed High Cholesterol Diet

대황유래 Laminaran이 고콜레스테롤 식이를 급여한 흰쥐의 혈청지질 성분에 미치는 영향

  • Published : 2006.08.30

Abstract

This study was conducted to investigate the influence of laminaran from Eisenia bicyclis on serum lipid composition of rats fed high fat and cholesterol diets. Fourty male Sprague-Dawley rats weighing $70{\pm}2.5g$ of 4 weeks old were fed experimental diets for 6 weeks with high fat diet consisting of basal diet plus cholesterol (1%) and lard (10%) for the inducement of hyperlipidemia. The effect of laminaran supplements via drinking waters on serum lipid composition of rat were investigated for 5 weeks by administration of experimental diet group fed basal diet only as normal group, control group fed high fat diet, LL group fed high fat diet plus 0.25% laminaran containing water, and LH group fed high fat diet plus 0.5% laminaran containing water, respectively. As a results of experiments, it was found that LL and LH groups showed significant (p<0.05) decrease in body weight gain and liver weight as compared with control and it may caused by decreased FER. The weight of cecum and adipose tissue (EFP) of LL group showed a significantly (p<0.05) decreased patterns compared with control. It was also found that LL and LH diet groups affects the intestinal length and transit time of rat as significantly (p<0.05) increased in length of intestine and decreased in transit time. In addition, LL and LH diet groups showed a dramatic decrease in triglyceride, total and LDL-cholesterol, and significant increase in HDL-cholesterol compared with control diet group, by which results in decreased in AI. These results indicate that crude laminaran from Eisenia bicyclis has a strong hyperlipidemic and hypercholesterolemic activities in rat fed high fat and cholesterol diet.

본 연구는 국내산 갈조류에 대하여 laminaran의 함량을 조사한 결과 대황에서 다량의 laminaran을 함유하고 있는 것으로 나타나 부분정제 laminaran의 생리활성 규명의 일환으로 대황에서 laminaran을 추출한 다음 고지방 식이로 사육한 흰쥐에게 음용수로 급여하였을 때 장기능과 혈청내 지질대사에 미치는 영향을 검토하기 위하여 실시하였다. 식이성 고지혈증이 유발된 실험동물은 대조군(control)., laminaran 0.25% 음용군(low dose, LL), laminaran 0.5% 음용군(high dose, LH)으로 나누었으며, 정상식이를 하는 정상군(normal)은 일반 음용수를 섭취시켰다. LL군 및 LH군은 대조군에 비해 체중증가량은 낮았고, 식이섭취량은 실험군 간 유의적인 차이는 없었다. 체중 100g당 간장, 신장, 부고환 지방조직 무게는 고지혈증 유발 실험군(control, LL 및 LH군)이 정상군(normal)에 비해 높았으나, 실험대조군(control)에 비해서는 LL군과 LH군이 낮게 나타난 반면, 맹장의 무게는 LL군과 LH군이 대조군에 비해 무거웠으며, 소장과 대장의 길이는 정산군과 대조군에 비하여 길은 것으로 나타났다. 혈중 총지질 함량은 LL군과 LH군이 대조군에 비해 각각 36.7 및 36.4%, 중성지질은 23.3 및 31.2%, 인지질 농도는 31.2 및 41.2%로 감소하였다. 또한 총콜레스테롤 함량은 대조군에 비해 34.0 및 26.2%, LDL-콜레스테롤은 69.6 및 68.2% 감소하였고, HDL-콜레스테롤 함량은 각각 40.4 및 44.6% 증가하였다. 동맥경화지수(AI)는 대조군 1.8, LL군 0.5, LH군 0.6으로 대조군에 비해 AI가 각각 72.2 및 66.6% 감소하였다. 이상의 결과 laminaran은 식이성 고지혈증 흰쥐에 대한 혈청 지질성분의 개선효과가 있는 것으로 사료된다.없었으며, activated partial thromboplastin time 또한 큰 차이가 없는 것으로 나타났다. 기대되며, 이에 대한 지속적인 연구가 사료 된다. 수크랄로스 1.27 mg/person/day로 각 인공감미료의 ADI를 국민평균체중 55 kg으로 환산한 $825{\sim}2,200\;mg/person/day$와 비교하였을 때 매우 낮은 수치를 나타내었다. 따라서 본 연구의 결과, 각 인공감미료의 총 일일추정섭취량은 ADI 대비 0.2% 수준이었고 사용가능 대상 식품의 이론적 최대섭취량(TMDI)의 $1.0{\sim}21.4%$의 수준으로 사용대상식품을 통한 인공감미료의 섭취는 안전하다고 판단된다.더 불량할 것으로 예측된다. 24시간회상법과 식품섭취빈도조사법을 이용하여 농촌지역 노인들의 영양소섭취량을 측정하여 비교한 본 연구결과를 종합해보면, 비록 두 식이섭취조사방법 간에 높은 상관성은 보여주지 못하였지만, 영양소섭취량은 두 방법 간에 비슷한 수준을 보여주어, 본 연구대상 특정 농촌지역 노인들의 영양소섭취량 조사에 24시간회상법 및 식품섭취빈도조사법 모두가 사용될 수 있음을 예견하였다. 노인인구 대상으로 보다 정확한 영양소 섭취량 측정을 할 수 있는 식품섭취빈도조사지 개발이 시급한 요구로 제시된다.었다. 즉 음식요인에 대해 높게 인식할수록 재방문의도 및 추천의도가 커지는 것을 알 수 있었다. 대학교 급식소 운영주체에 대한 소비자 인지도 조사결과 향후 대학교 급식소를 운영하는 위탁급식 전문업체의 경우 그들의 브랜드를 알리기 위한 홍보전략이 절실히 필요함을 알 수 있었으며, 최근고객감소로 인하여 다양한 급식운영 마케팅전략을 수립하고 있는 단체급식 운영자들은 재방문 및 추천의도의 선행요건이 급식서비스 품질에 대한 소비자의 인식임을 명심하여 가장 기본이 되는 급식서비스 품질수준을 향상시키기 위하여 노력하여야 할 것이다.

Keywords

References

  1. Joo DS, Lee JK, Choi YS, Cho SY, Je YK, Choi JW. 2003. Effects of seatangle oligosaccharide drink on serum and hepatic lipids in rats fed a hyperlipidemic diet. J Korean Soc Food Sci Nutr 32: 1364-1369 https://doi.org/10.3746/jkfn.2003.32.8.1364
  2. Goldstein JL, Schrott HG, Hazzard WR. 1973. Genetic analysis of lipid levels in 176 families and delineation of a new inherited disorder, combined hyperlipidemia. J Clin Invest 52: 1544-1549 https://doi.org/10.1172/JCI107332
  3. Kannel WB, Mc Gee DL. 1979. Diabetes and cardiovascular disease the framingham study. JAMA 241: 2035-2040 https://doi.org/10.1001/jama.241.19.2035
  4. Harper AE. 1983. Dietary and heart disease- a critical evaluation. Dietary Fat Health 44: 496-501
  5. Ebihara K, Kiriyama S. 1990. Physicochemical property and physiological function of dietary fiber. Nippon Shokuhin Kogyo Gakkaishi 37: 916-920 https://doi.org/10.3136/nskkk1962.37.11_916
  6. Beaumont JL, Carlson LA, Cooper GR, Frejfar Z, Fredrickson DS, Strasser T. 1970. Classification of hyperlipidemia and hyperlipoproteinemia. Bull WHO 43: 891-897
  7. Kim HS, Kim GA. 1998. Effects of the feeding Hijikia fusiforme (Harvey) Okamura on lipid composition of serum in dietary hyperlipidemic rats. J Korean Soc Food Sci Nutr 27: 718-723
  8. Park JC, Jang YI, Doo MS, Kim SH, Choi JW. 1996. Effect of methanolic extract of pachymeniopsis elliptica on lipods comoponent of hyperlipidemic rats. J Korean Soc Food Sci Nutr 25: 958-962
  9. Painter TJ. 1997. Algal oligosaccharides. In The polysaccharides. Aspinall GO, ed. Academic Press, New York. Vol 2, p 195-285
  10. Pereira MS, McDowell RH. 1967. Chemistry and enzymology of marine algae polysaccharides. Academic Press, New York. p 53-71
  11. Kim YM, Choi YS, Park JH. 2006. Purification and chemical characterisation of laminaran from Eisenia bicylis in Korea. J Korean Soc Food Sci Nutr 35: 78-86 https://doi.org/10.3746/jkfn.2006.35.1.078
  12. Nagumo T, Nishino T. 1997. Fucan sulfates and their anticoagulation activities. In Polysaccharides in Medicinal Applications. Dumitriu S, ed. Med Assoc Thai, New York- Basel-Hong Kong. p 545-574
  13. Witvrouw M, De Clercq E. 1997. Sulfated polysaccharides extracted from sea algae as potential antiviral drugs. Gen Pharmacol 29: 497-511 https://doi.org/10.1016/S0306-3623(96)00563-0
  14. Zvyagintseva TN, Shevchenko NM, Nazarova IV, Scobum AS, Luk`yanov PA, Elyakova AT. 2000. Inhibition of complement activation by water-soluble polysaccharides of some far-eastern brown seaweeds. Com Biochem Physiol 126: 209-215
  15. Kim YM, Kim DS, Choi YS. 2004. Anticoagulant activities of brown seaweed extracts in Korea. Korean J Food Sci Technol 36: 1008-1013
  16. Kim KI, Han CK, Seong KS, Lee OH, Park JM, Lee BY. 2003. Effect of whole powder and extracts of Gastrodiae Rhiizoma on serum and body fat in rats fed high-fat diet. Kor J Food Sci Technol 35: 720-725
  17. Son YJ, Kim YS, Lee YJ. 1999. The effects of Rhei palmati radix and Rhei undulati radix on the blood lipids and enzymes of hypercholesterolic rats. Kor J Herbology 14: 61-68
  18. Wang SG, Yoon EY, Lim YH. 1996. Effects of indigestible dextrin on bowel function and serum lipd in rats. J Korean Soc Food Sci Nutr 25: 560-567
  19. Jung BM, Ahn CB, Kang SJ, Park JH, Chung DH. 2001. Effects of Hijikia fusiforme extracts on lipid metabolism and liver antioxidative enzyme activities in triton-induced hyperlipidemic rats. J Korean Soc Food Sci Nutr 30: 1184- 1189
  20. Frings CS, Dunn RJ. 1970. A colorimetric method for determination of total serum lipids based on the sulfophosphovanillin reaction. Am J Clin Path 53: 89-92 https://doi.org/10.1093/ajcp/53.1.89
  21. Richmond W. 1976. Use of cholesterol oxidase for assay of total and free cholesterol in serum by continuous flow analysis. Clin Chem 22: 1579-1584
  22. McGowan MW, Artiss JD, Strandbergh DR, Zak B. 1983. A peroxidase-coupled method for the colorimetric determination of serum triglycerides. Clin Chem 29: 538-542
  23. Chen PS, Toribara TY, Warnerm H. 1956. Micro-determination of phosphorus. Anal Chem 28: 1756-1760 https://doi.org/10.1021/ac60119a033
  24. Noma A, Nakayama KN, Kota M, Okabe H. 1978. Simultaneous determination of serum cholesterol in high and low density lipoprotein with use of heparin, $Ca^{2+}$ and an anion exchange resin. Clin Chem 24: 1504-1511
  25. Choi JH, Kim DW. 1997. Effect of alginic acid-added seaweed drink (Haezomiin) in brown algae (Undaria pinnatifida) on obesity and biological activity of SD rats. Korean J Life Sci 7: 361-370
  26. Lee JG, Lim YS, Joo DS, Joung IH. 2002. Effects of diet with seatangle (Kjellmaniella crassifolia) on calciumacsortion, serum composition and feces in rats. J Korean Fish Soc 35: 601-607
  27. Deckere EAM, Kloots WJ, Amlsvoort JM. 1995. Both raw and retrograted starch decrease serum triglyceride concentration and fat accumulation in the rat. Br J Nutr 73: 287- 298 https://doi.org/10.1079/BJN19950030
  28. Vahouny GV. 1986. Dietary fiber, lipid metabolism and atherosclerosis. Fed Proc 41: 2801-2806
  29. Paulini I, Mehta T, Hargis A. 1987. Intestinal structural changes in African green monkeys after long term psyllium or cellulose feeding. J Nutr 117: 253-266 https://doi.org/10.1093/jn/117.2.253
  30. Cummings JH, Hii MJ. 1976. Changes in fecal composition and colonic function due to cereal fiber. Am J Clin Nutr 29: 1468-1475 https://doi.org/10.1093/ajcn/29.12.1468
  31. Brown RC, Kelleher J, Losowsky MS. 1979. The effect of pectin on the structure and function of the rat small intestine. Br J Nutr 42: 357-361 https://doi.org/10.1079/BJN19790125
  32. Wells AF, Ershoff BH. 1961. Benefical effet pectin in prevention of hypocholesterolemia and increase in liver cholesterol fed rats. J Nutr 74: 87-94 https://doi.org/10.1093/jn/74.1.87
  33. Kinnunen PKJ, Virtanen JA, Vainio P. 1983. Lipoprotein lipase and hepatic endothelial lipase. Atheroscler Rev 11: 65-72
  34. Faidley TD, Luhman CM, Galloway ST, Foley MK, Beitz DC. 1990. Effect of dietary fat source on lipoprotein composition and plasma lipid cocentrations in pigs. J Nutr 120: 1126-1132 https://doi.org/10.1093/jn/120.10.1126

Cited by

  1. The Effect of Eisenia bicyclis Extracts on Bone Tissues in Ovariectomized Rats vol.42, pp.1, 2013, https://doi.org/10.3746/jkfn.2013.42.1.033
  2. Isolation of Phlorotannins from Eisenia bicyclis and Their Hepatoprotective Effect against Oxidative Stress Induced by tert-Butyl Hyperoxide vol.165, pp.5-6, 2011, https://doi.org/10.1007/s12010-011-9347-3
  3. Effect of Ecklonia cava Extracts Supplementation on cognitive ability in mice vol.29, pp.6, 2014, https://doi.org/10.6116/kjh.2014.29.6.103.
  4. Effects of Casein Hydrolysate on the Systolic Blood Pressure and Serum Lipid Profiles in Spontaneously Hypertensive Rats vol.30, pp.4, 2010, https://doi.org/10.5851/kosfa.2010.30.4.545
  5. Anti-hyperlipidemic effect of an edible brown algae, Ecklonia stolonifera, and its constituents on poloxamer 407-induced hyperlipidemic and cholesterol-fed rats vol.31, pp.12, 2008, https://doi.org/10.1007/s12272-001-2152-8
  6. Effects of the purified extracts fromLycii Cortex Radicisand ginger on lipid statusand serum cytokine levels in rats fed high fat diet vol.45, pp.5, 2012, https://doi.org/10.4163/kjn.2012.45.5.411
  7. Effects of Fermented Sargassum thunbergii on Platelet Aggregation and Serum Lipid Levels in Obese Rat induced by High Fat Diet vol.25, pp.4, 2015, https://doi.org/10.5352/JLS.2015.25.4.456
  8. Brown Algae Potential as a Functional Food against Hypercholesterolemia: Review vol.10, pp.2, 2006, https://doi.org/10.3390/foods10020234