Cytogenetic Analyses of Astragalus Species

황기류 식물 3종의 세포유전학적 분석

  • Kim, Soo-Young (School of Bioscience and Biotechnology, Chungnam National University,Korea Research Institute of Bioscience and Biotechnology) ;
  • Choi, Hae-Woon (School of Bioscience and Biotechnology, Chungnam National University) ;
  • Kim, Chan-Soo (Warm-Temperate Forest Research Center, Korea Forest Research Institute) ;
  • Sung, Jung-Sook (National Institute of Crop Science, RDA) ;
  • Lee, Joong-Ku (Korea Research Institute of Bioscience and Biotechnology) ;
  • Bang, Jae-Wook (School of Bioscience and Biotechnology, Chungnam National University)
  • 김수영 (충남대학교 생명과학부,한국생명공학연구원) ;
  • 최혜운 (충남대학교 생명과학부) ;
  • 김찬수 (산림과학원 난대산림연구소) ;
  • 성정숙 (작물과학원 인삼약초과) ;
  • 이중구 (한국생명공학연구원) ;
  • 방재욱 (충남대학교 생명과학부)
  • Published : 2006.08.30

Abstract

To elucidate cytogenetic differences, karyotype analysis and FISH (fluorescence in situ hybridization) with 45S and 5S rDNAs were carried out in the three Astragalas species: Astragalas membranaceus Bunge, A. membranaceus var. alpinus Nakai and A. mongholicus Bunge. The somatic metaphase chromosome numbers of all three species were 2n=2x=16 and the size of chromosomes ranged $2.19{\sim} 5.73\;{\mu}m$. The chromosome complement of A. membranaceus consisted of each four pairs of metacentrics (chromosomes 3,4,6 and 7) and submetacentrics (chromosomes 1,2,4 and 8). In A. membranaceus var. alpinus, the chromosome complement consisted of two pairs of metacentrics (chromosomes 4 and 8) and six pairs of submetacentrics (chromosomes 1,2,3,5,6 and 7). A. mongholicus had three pairs of metacentrics (chromosomes 6,7 and 8) and five pairs of submetacentrics (chromosomes 1,2,3,4 and 5). Using bicolor-FISH, one pair of 45S and 5S rDNA signals could be detected on the centromeric regions of chromosomes 8 and 7 of A. membranaceus and A. mongholicus, respectively. In contrast, A, membranaceus var. alpinus had one pair of 45S signals on the centromeric region of chromosome 8 and two pairs of 5S rDNA signals on the short arms of chromosomes 7 and 8.

References

  1. Bae KH (2000) The Medicinal Plants of Korea. Kyohaksa Co., Ltd., p. 242
  2. Battalia E (1955) Chromosome morphology and terminology. Caryologia 8:179-187 https://doi.org/10.1080/00087114.1955.10797556
  3. Brown GR, Carlson JE (1997) Molecular cytogenetics of the genes encoding 18S-5.8S-25S rRNA and 58 rRNA in two species of spruce (picea). Theor. Appl. Genet. 97:1-9 https://doi.org/10.1007/s001220050860
  4. Brutovska R, Cellarova E, Schubert I (2000) Cytogenetic characterization of three Hypericum species by in situ hybridization. Theor. Appl. Genet. 101:46-50 https://doi.org/10.1007/s001220051447
  5. Choi HW, Koo DH, Lee WK, Kim SY, Sung JS, Seong NS, Suh Y, Bang JW (2005) Cytogenetic analysis of seven Angelica species. Korean J. Med. Crop Sci. 13:118-121
  6. Fransz P, Armstrong S, Alonso-Blanco C, Fischer TC (1998) Cytogenetics for the model system Arabidopsis thaliana. Plant J. 13:867-876 https://doi.org/10.1046/j.1365-313X.1998.00086.x
  7. Fukui K, Nakayama S, Ohmido N, Yoshiaki H, Yamabe M (1998) Quantitative karyotyping of three diploid Brassica species by imaging methods and localization of 45S rDNA loci on the identified chromosomes. Theor. Appl. Genet. 96:325-330 https://doi.org/10.1007/s001220050744
  8. Fukui K, Ohmido N, Khush GS (1994) Variability in rDNA loci in the genus Oryza detected through fluorescence in situ hybridization. Theor. Appl. Genet. 87:893-899
  9. Hasterok R, Jenkins G, Langdon T, Jones RN, Maluszynska J (2001) Ribosomal DNA is an effective marker of Brassica chromosomes. Theor. Appl. Genet. 103:486-490 https://doi.org/10.1007/s001220100653
  10. Jiang J, Gill BS (1994) Non isotopic in situ hybridization and plant genome mapping: the first 10 years. Genome 37:717-725 https://doi.org/10.1139/g94-102
  11. Kihara H, Yamamoto (1932) Karyomorphologische untersuchungen an Rumex acetosa L and Rumex montanus Desf. Cytologia 3:84-118
  12. Kim HH, Park YW, Yoon PS, Choi HW, Bang JW (2004a) Cytogenetic analysis of four Hosta species native to Korea. Korean J. Med. Crop Sci. 12:397-400
  13. Kim HH, Park YW, Yoon PS, Choi HW, Bang JW (2004b) Karyotype analysis of eight Korean native species in the genus Iris. Korean J. Med. Crop Sci. 12:401-405
  14. Kim MY (2004) Korean Endemic Plants. Solkwahak Co. Ltd. p. 114
  15. Kim SY, Choi HW, Bang JW (2004) Physical mapping of rDNAs using McFISH in Anemarrhena asphodeloides Bunge. Korean J. Med. Crop Sci. 12:515-518
  16. Kim SY, Choi HW, Koo DH, Kim CS, Bang JW (2005) Karyotype analysis and physical mapping of rDNAs using McFISH in Jeffersonia dubia Benth. Korean J. Med. Crop Sci. 13:48-51
  17. Kim SY, Koo DH, Bang JW (2002) Karyotype analysis of Anemarrhena asphodeloides Bunge. Korean J. Med. Crop Sci. 10: 144-146
  18. Kim SY, Lim YP, Bang JW (1998) Cytogenetic analysis of Brassica campestris var. pekinensis using C-banding. Korean J Genet. 20:85-295
  19. Koo DH, Hur YK, Jin DC, Bang JW (2002) Karyotype analysis of a Korean cucumber cultivar (Cucumis sativus L. cv. Winter Long) using C-banding and bicolor fluorescence in situ hybridization. Mol. Cells 13:413-418
  20. Koo DH, Kim SY, Bang KH, Seong NS, Bang JW (2003a) Cytogenetic analyses of Angelica plants using Feulgen staining and multicolor fluorescence in situ hybridization. Korean J. Plant Biotech. 30:123-127 https://doi.org/10.5010/JPB.2003.30.2.123
  21. Koo DH, Seong NS, Sung JS, Bang KH, Bang JW (2003b) Karyotype analysis and physical mapping of rDNAs in Bupleurum longeradiatum. Korean J. Med. Crop Sci. 11(5):402-407
  22. Lee CB (1985) Illustrated Flora of Korea. Hyangmoonsa Co., Ltd., p.492
  23. Lee WK, Choi HW, Bang JW (2004) Karyotype analysis of five species of genus Pulsatilla. Korean J. Med. Crop Sci. 12:490-493
  24. Lee WK, Choi HW, Koo DH, Kim SY, Bang JW (2005b) Molecular cytogenetics of five Pulsatilla species to the 5S, 45S rDNA genes by fluorescence in situ hybridization. Korean J. Genet. 27:179-185
  25. Leitch IJ, Heslop-Harrison JS (1992) Physical mapping of the 18S-5.8S-26S rDNA genes in barely by in situ hybridization. Genome 35:1013-1018 https://doi.org/10.1139/g92-155
  26. Levan A, Frekga K, Sandberg A (1964) Nomenclature for centromeric position in chromosomes. Hereditas 52:201-220 https://doi.org/10.1111/j.1601-5223.1964.tb01953.x
  27. Luo JP, JIa JF, Gu YH, Liu J (1999) High frequency somatic embryogenesis and plant regeneration in callus cultures of Astergalus adsurgens Pall. Plant Sci. 143:93-99 https://doi.org/10.1016/S0168-9452(99)00023-0
  28. Maluszynska J, Heslop-Harrison JS (1991) Localization of tandemly repeated DNA sequences in Arabidopsis thaliana. Plant J. 1:159-166 https://doi.org/10.1111/j.1365-313X.1991.00159.x
  29. Mukai Y, Nakahara Y (1993) Simultaneous discrimination of the three in hexaploid wheat by multicolor fluorescence in situ hybridization using total genomic and highly repeated DNA probes. Genome 36:489-494 https://doi.org/10.1139/g93-067
  30. Nakamura R, Kitamura S, Ohmido N, Fukui K (2001) Karyotype analysis of Nicotiana kawakamii Y. Ohashi using DAPI banding and rDNA FISH. Theor. Appl. Genet. 102:810-814 https://doi.org/10.1007/s001220100577
  31. Naranjo CA, Poggio L, Brandham PE (1983) A practical method of chromosome classification on the basis of centromere position. Genetica 62:51-53 https://doi.org/10.1007/BF00123310
  32. Ohmido N, Fukui K (1995) Cytological studies of African cultivated rice, Oryza glaberrima. Theor. Appl. Genet. 91:212-217
  33. Sang Y, Ling GH (2000) Comparative physical mapping of the 18S-5.8S-25S rDNA in three Sorghum species. Genome 43: 918-922 https://doi.org/10.1139/gen-43-5-918
  34. Toh CA (1971) A cytotaxonomic study on the Astragalus membranaceus and Astragalus membranaceus var. alpinus. Korean J. Plant Tax. 3:57-61 https://doi.org/10.11110/kjpt.1971.3.1.057
  35. White MDJ (1940) The origin and evolution of multiple sex chromosome mechanisms. J. Genet. 40:303-336 https://doi.org/10.1007/BF02982496
  36. 김창민, 신민교, 안덕균, 이경순 (1998) 중약대사전. 정담. 서울., p.6460-6461