Electric equivalent circuit of $SrTiO_3$-based varistor

$SrTiO_3$ 바리스터의 전기적 등가회로

  • 강대하 (부경대학교 전기제어공학부) ;
  • 노일수 (부경대학교 대학원)
  • Published : 2006.11.30

Abstract

In this study capacitance and dielectric loss factor were measured with low-voltage signal and the simulation of equivalent circuits for the data was conducted. As the result it was shown that the equivalent circuit model considered the grain-boundary structure with semiconducting layer, dielectric layer and depletion layer was well approximated with the observed data. Various parameters were determined by a optimum curve-fitting method and could be used to analyze the characteristics of varistor. It also seems that the proposed equivalent circuit model will be adopted for other BL type varistors.

Keywords

References

  1. P. E. C. Frenken, M. P. A. Viegers and A. P. Gehring,'Microstructure of $SrTiO_3$ Boundary Layer Capacitor Materials', J. Am. Ceram. Soc. Vol. 64, pp. 687-690, 1981 https://doi.org/10.1111/j.1151-2916.1981.tb15886.x
  2. Masayuki Fujimoto and W. David Kingery, 'Microstructures of $SrTiO_3$ Internal Boundary Layer Capacitors During and After Processing and Resultant Electrical Properties', J. Am. Ceram. Soc., Vol. 68, pp. 169-173, 1985 https://doi.org/10.1111/j.1151-2916.1985.tb15292.x
  3. T. R. N. Kutty, Sam Philip,'Low voltage varistors based on SrTiO3 Ceramics', Materials Science and Engineering, B33, pp. 58-66, 1994
  4. Bryan D. Huey, Dawn A. Bonnell, 'Nanoscale variation in electric potential at oxide bicrystal and polycrystal interfaces', Solid State Ionics, Vol. 131, pp. 51-60, 1999 https://doi.org/10.1016/S0167-2738(00)00621-4
  5. Saso Sturm, Aleksander Recnik, and Miran Ceh,'Newcleation and groth of planar faults in SrO-excess $SrTiO_3$', Journal of European Ceramic Society, Vol. 21, pp. 2141-2144, 2000 https://doi.org/10.1016/S0955-2219(01)00189-3
  6. V. Ravikumar, R. P. Rodringes and V. P. Dravid, 'An investigation of aceptor-doped grain boundaries in SrTiO3', J. Phys. D:Appl. Phys. Vol. 29, pp. 1799-1806, 1996 https://doi.org/10.1088/0022-3727/29/7/014
  7. M. Matsoka, 'Nonohmic Properties of Zinc Oxide Ceramics', Jpn. j. Appl. Phys. Vol. 10, No. 6, pp. 736-746, 1971 https://doi.org/10.1143/JJAP.10.736
  8. 向江和郞,'バリスタの導電機構',エレクトロニクセラミクス,'89 5月号 バリスタ特輯, pp. 19-25, 1989
  9. G. D. Mahan, Lionel, M. Levinson and H. R. Philipp,'Theory of conduction in ZnO varistors',J. appl. Phys. Vol. 54, No. 4, pp. 2799-2812, 1979
  10. P. L. Hower and T. K. Gupta, 'A barrier model for ZnO varistors', J. Appl. Phys. Vol. 50, No. 7, pp. 4847-4855, 1979 https://doi.org/10.1063/1.326549
  11. David R. Clake, 'Varistors Ceramics', J. Am. Ceram. Soc., Vol. 82, No. 3, pp. 485-502, 1999 https://doi.org/10.1111/j.1151-2916.1999.tb01793.x
  12. Lionel. M. Levinson and H. R. Philipp,'The physics of metal oxide varistors', J. Appl. Phys., Vol. 46, No. 2, pp. 1332-1340, 1975 https://doi.org/10.1063/1.321701
  13. August Chelkovski : Delectric Physics, Elsevier Scientific Publishing Company, Amsterdam, 1980
  14. Lionel. M. Levinson and H. R. Philipp,' ac properties of metal-oxide varistors', J. Appl. Phys., Vol. 47, No. 3, pp. 1117-1122, 1976 https://doi.org/10.1063/1.322745
  15. S. A. Pinaro et al,'Effect of $Cr_2O_3$ on the electrical properties of multicomponent ZnO varistors at the pre-breakdown region', J. Mater. Sci., Vol. 30, pp. 133-141, 1995 https://doi.org/10.1007/BF00352142
  16. G. E. Pike, 'Semiconducting Polycrystalline Ceramics', Materials Science and Technology, Vol. 11, pp. 731-754, 1994
  17. S. Havriliak and S. Negami, 'A Complex Plane Analysis of ${\alpha}-dispersion$ in Some Polymer Systems', J. Polym. Sci.-C, Vol. 14, pp. 99-117 1966
  18. D. M. Smith: Oxides and oxide Films, edited by J. W. Diggle (Deker, New York), Vol.2, pp. 95, 1973