DOI QR코드

DOI QR Code

Assay of Dinitrotoluene on a Contaminated Soil Sample with an Anodic Stripping Peak Current

  • Ly, Suw-Young (Biosensor Research Institute, Seoul National University of Technology) ;
  • Lee, Chang-Hyun (Division of General Education, Pyeongtaek University) ;
  • Jung, Young-Sam (Biosensor Research Institute, Seoul National University of Technology)
  • Published : 2006.11.30

Abstract

This report presents a voltammetric assay of dinitrotoluene using a DNA immobilized onto a carbon nanotube paste electrode (PE). The cyclic voltammetry (CV) and square wave (SW) stripping voltammetry parameters of the optimized conditions were obtained. An anodic peak current appeared at 0.3 V (versus Ag/AgCl) in a 0.1-M $NH_4H_2PO_4$ electrolyte solution. The detection limit was found to be $0.6ngL^{-1}$(S/N = 10), within a deposition time of 100 sec.

Keywords

References

  1. Chen, W. S., C. N. Juan and K. M. Wei, 2005, Recovery of High-purity 2,4-Dinitrotoluene from Spent Mixed Acid in the Toluene Nitration Process Separation and Purification Technology, 41, 57-63 https://doi.org/10.1016/j.seppur.2004.04.004
  2. Gupta, G. and H. Bhaskaran, 2004, Short Communication Use of Poultry Litter for the Biodegradation of Soil Contaminated with 2,4- and 2,6Dinitrotoluene, Journal of Hazardous Materials, B116,167-171
  3. Boopathy, R., 2002, Effect of Food-grade Surfactants on the Bioremediation of Explosives contaminated Soil, Journal of Hazardous Materials, 92, 103-114 https://doi.org/10.1016/S0304-3894(01)00377-6
  4. Borch, T. and R. Gerlach, 2004, Use of Reversed-phase, High-performance Liquid-chromatographydiode Array Detection for the Complete Separation of 2,4,6- Trinitrotoluene Metabolites and the EPA Method 8330 Explosives: Influence of Temperature and an Ion-pair Reagent, Journal of Chromatography, A, 1022, 83-94
  5. Abramov, V. O., O. V. Abramov, A. E. Gekhman, V. M. Kuznetsov and G. J. Price, 2005, Ultrasonic Intensification of Ozone and Electrochemical Destruction of 1,3-Dinitrobenzene and 2,4-Dinitrotoluene, Ultrasonics Sonochemistry
  6. Sponza, D. T., H. Atalay, 2005, Simultaneous Phosphorus, Nitrogen and Dinitrotoluene Removals in Batch Anaerobic/Anoxic/Aerobic Sequentials, Process Biochemistry, 40, 25-34
  7. Chen, W. S., C. N. Juan and K. M. Wei, 2005, Mineralization of Dinitrotoluene and Trinitrotoluene of Spent Acid in the Toluene Nitration Process by Fenton Oxidation, Chemosphere, 60, 1072-1079
  8. Chen, W. S., C. N. Juan and K. M. Wei, 2005, Recovery of Dinitrotoluene and Trinitrotoluene from Spent Acid in the Toluene Nitration Process Using the Solvent Extraction, Separation and Purification Technologies, 43, 95-101
  9. Honeychurch, K. C., J. P. Hart, P. R. J. Pritchard, S. J. Hawkins and N. M. Ratcliffe, 2003, Development of an Electrochemical Assay for 2,6-Dinitrotoluene Based on a Screen-printed Carbon Electrode and Its Potential Application in Bioanalysis and Occupational and Public Health, Biosensors and Bioelectronics, 19, 305-312 https://doi.org/10.1016/S0956-5663(03)00208-2
  10. Shin, K. H., Y. Lim, J. H. Ahn, J. Khil, C. J. Cha and H. G. Hur, 2005, Anaerobic Biotransformation of Dinitrotoluene Isomers by Lactococcus Lactis Subsp, Lactis Strain 27 Isolated from Earthworm Intestines, Chemosphere
  11. Chen, Y., H. Liu, Y. Deng, D. Schauki, M. J. Fitch, R. Osiander, C. Dodson, J. B. Spicer, M. Shur and X. C. Zhang, 2004, THz Spectroscopic Investigation of 2,4-Dinitrotoluene, Chemical Physics Letters, 400, 357-361 https://doi.org/10.1016/j.cplett.2004.10.117
  12. Walsh, M. E., 2001, Determination of Nitroaromatic, Nitramine and Nitrate Ester Explosives in Soil Using Gas Chromatography and an Electron Capture Detector, Talanta, 54, 427-438 https://doi.org/10.1016/S0039-9140(00)00541-5
  13. Asbury, G. R., J. Klasmeier and H. H. Hill, 2000, Jr. Analysis of Explosives Using Electrospray Ionization:Ion Mobility Spectrometry (ESI:IMS), Talanta, 50, 1291-1298 https://doi.org/10.1016/S0039-9140(99)00241-6
  14. Clausen, J., J. Robb, D. Curry and N. Korte, 2004, A Case Study of Contaminants on Military Ranges: Camp Edwards, Massachusetts, USA. Environmental Pollution, 129, 13-21
  15. Pinnaduwage, L. A., T. Thundat, J. E. Hawk, D. L. Hedden, P. F. Britt, E. J. Houser, S. Stepnowski, R. A. McGill and D. Bubb, 2004, Detection of 2,4-Dinitrotoluene Using Microcantilever Sensors, Sensors and Actuators, B 99, 223-229
  16. Weese, R. K., J. L. Maienschein and C. T. Perrino, 2003, Kinetics of the B-O Solid-Solid Phase Transition of HMX, Octahydro- 1,3,5,7- tetranitro-1,3,5,7 - tetrazocine, Thermochimica Acta, 401, 1-7 https://doi.org/10.1016/S0040-6031(03)00050-9
  17. Zhang, C., R. C. Daprato, S. F. Nishino, J. C. Spain and J. B. Hughes, 2001, Remediation of Dinitrotoluene-contaminated Soils from Fonner Ammunition Plants: Soil Washing Efficiency and Effective Process Monitoring in Bioslurry Reactors, Journal of Hazardous Materials, B87, 139-154
  18. Groom, C. A., S. Beaudet, A. Halasz, L. Paquet and J. Hawari, 2001, Detection of the Cyclic Nitramine Explosives Hexahydro-1,3,5- trinitro-1,3,5-triazine (RDX) and Octahydro- 1,3,5,7-tetranitro- 1,3,5,7- tetrazine (HMX) and of their Degradation Products in Soil Environments, Journal of Chromatography, A 909, 53-60
  19. Dovbeshko, G. I., O. P. Repnytska and E. D. Obraztsova, 2003, Y.V. Shtogun, DNA Interaction with Single- walled Carbon Nanotubes: A SEIRA Study,' Chemical Physics Letters, 372, 432-437 https://doi.org/10.1016/S0009-2614(03)00429-9
  20. M. Guo, J. Chen, D. Liu, L. Nie and S. Yao, 2004, Electrochemical Characteristics of the Immobilization of Calf Thymus DNA Molecules on Multiwalled Carbon N anotubes. Bioelectrochemistry, 62, 29-35 https://doi.org/10.1016/j.bioelechem.2003.10.005
  21. Sherigara, B. S., W. Kutner and F. D'Souza, 2003, Electrocatalytic Properties and Sensor Applications of Fullerenes and Carbon Nanotubes, Electroanalysis, 9, 15
  22. Wang, J., M. Li, Z. Shi, N. Li and Z. Gua, 2004, Electrochemistry of DNA at Single-walled Carbon Nanotubes, Electroanalysis, 1, 16
  23. Kerman, K., Y. Morita, Y. Takamura, M. Ozsoz and E. Tamiya, 2004, DNA-directed Attachment of Carbon Nanotubes for Enhanced Label-free Electrochemical Detection of DNA Hybridization. Electroanalysis, 20, 16
  24. Joseph, N., M. Barisci, G. Tahhan, G. Wallace, S. Badaire, T. Vaugien, M. Maugey and P. Poulin, Properties of Carbon Nanotube Fibers Spun from DNA- stabilized Dispersions
  25. Pedano, M. Land G. A. Rivas, 2004, Adsorption and Electrooxidation of Nucleic Acids at Carbon Nanotube Paste Electrodes, Electrochemistry Communications,s6, 10-16