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A robust minimum-time control (RMTC) strategy is addressed and it is extended to the dual-

stage servo design. Rather than conventional switching type sub-optimal controls, it is a
reference following control approach where the predetermined minimum-time trajectory (MTT)
is tracked by the perturbation compensator based feedback controller. First, the minimum-time

trajectory for a mass-damper system is derived. Then, the perturbation compensator to achieve

robust tracking performance in spite of model uncertainty and external disturbance is suggested.
The RMTC is also applied to the dual-stage positioner which consists of coarse actuator and
fine one. To best utilize the actuation redundancy of the dual-stage mechanism, a null-motion

controller to actively regulate the relative motion between the two stages is formulated. The

performance of RMTC is validated through simulation and experiment.
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1. Introduction

In many positioning servomechanisms, the mini-
mum-time control is considered as a hot issue to
enhance the performance and productivity. Tak-
ing some examples, the performance of hard disk
drives is directly related to the track seek time of
head positioning arm and the pick-and-place speed
determines the productivity of a robotic assembly
line. Also, the payability of mass production lines
in semiconductor or flat panel display manufac-
turing industry is largely dependant upon how
much the overall tact time can be reduced by
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improving the positioning performance of in-line
positioning systems such as panel-mask aligners,
probing systems, and visual inspection equip-
ments.

In terms of the optimal control solving proce-
dure, the minimum-time (i.e., time-optimal) con-
trol is given as a bang-bang control law: «(¢)=
—sgn(k(x)) with k(x) the switching function
(Athans and Falb, 1966). However, the minimum-
time control solution is just a theoretical possi-
bility and it only holds for nominal model with
no process noises. In practical situations where
the model uncertainty and external disturbance
exist, the bang-bang control may occur heavy
chattering or limit cycling since exact switching
on the switching manifold is actually impossible
owing to the discrepancy between the model
and the real (Franklin et al., 1990 ; Friedland,
1996).

Hence, a large number of sub-optimal or near

minimum-time control strategies to mitigate the
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chattering phenomena and compromise control
performance were announced, e.g., in (Newman
and Souccar, 1991 ; Pao and Franklin, 1993) and
the references therein. Most of them are basical-
ly to avoid severe switching control actions by
modifying the switching surface in the vicinity
of the target point and introducing a saturation
function like instead of the signum function. For
example, Franklin et al.(1990) addressed the
proximate time-optimal servomechanism (PTOS)
and it was extended to 3rd-order systems in {(Pao
and Franklin, 1993), where the switching con-
trol in the tolerance region of target point is
replaced by a linear control technique. Newman
and Souccar (1991) introduced a boundary layer
around the switching function and adopted the
sliding mode control technique near the target
region for chattering suppression. Also, Kim et
al.(1999) proposed a robust time-optimal con-
troller combining the PTOS with an internal-
loop compensator.

In all sub-optimal control methods including
above examples, the bang-bang control based on
the switching function has been retained although
approximation schemes are incorporated to meet
the robust performance requirement. While, the
reliability of the switching function value is en-
tirely dependant upon the exactness of full-state
feedback signals and in case that the feedback sig-
nals contain large time-delay and measurement
noise, the near time-optimality is not maintained
anymore. In this regard, the robust minimum-
time control (RMTC) as an alternative approach
is suggested in this paper. Instead of real-time
computing the switching function, we are to de-
termine the minimum-time trajectory (MTT) bas-
ed on the switching function and design a robust
tracking controller to follow it satisfactorily. This
approach has the merit of removing switching
control fundamentally.

The second issue of this paper is to apply the
RMTC to the dual-stage mechanism. Usually, posi-
tioning systems are driven by electrical motors or
hydraulic servomechanisms, where the servo band-
width and motion resolution are mainly limited
by the stick/slip motion due to the nonlinear fric-
tion. On the other hand. the fine actuators which

usually make use of piezoelectricity are free of
friction and enable much higher bandwidth mo-
tion, but their travel ranges are very small. Then,
the compound actuation system composed of
the coarse/fine dual-stage mechanism can utilize
both advantages of the two heterogeneous actua-
tors, where the coarse actuator can provide large
power and long travel range while the fine one
enables fast and fine motions {Yen et al., 1990 ;
Li and Horowitz, 2000 ; Schroeck et al., 2001 ;
Suthasun et al., 2004 ; Lee and Kim, 1997 ; Kim et
al., 2001). In the sequel, the dual-stage can in-
crease the minimum-time control performance in
such a manner that the tracking error occurred in
coarse stage following the minimum-time trajec-
tory is effectively compensated by the high band-
width motion of fine stage.

Since the dual-stage mechanism has actuation
redundancy, it is naturally accompanied by the
problem on how to coordinate the dual motions
for a target point. Above all, the fine stage move-
ment could be easily saturated owing to the small
travel range. To avoid this problem, as is com-
monly the case, the coarse stage and fine one are
separately operated. However, to best utilize the
capability of the dual-stage mechanism, it is nec-
essary to properly define the null-motion between
the two stages. In this paper, we investigate the
null-motion control which was not discussed so
deeply in other dual-stage papers. By regulating
the null-motion into the direction to minimize the
relative distance between the two stages, the range
saturation of the fine stage can be possibly pre-
vented.

This paper is organized as follows. In Section
2, the robust minimum-time control (RMTC) is
developed, where the minimum-time trajectory
(MTT) for a 2nd order mass—damper system is
derived and a novel robust perturbation com-
pensator {RPC) is proposed. In Section 3, the
RMTC is applied to the dual-stage positioning
mechanism, where a dual-stage control architect-
ure including the null~motion control loop is sug-
gested. In Sections 4 and 5, the proposed control
schemes are validated through simulation and ex-
periment. Finally, concluding remarks are fol-
lowed in Section 6.
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2. Robust Minimum-Time Control

To achieve the minimum-time control perfor-
mance in real applications where model uncer-
tainty and process noise are involved, a practical
consideration should appended to the optimal
control solution : 2 (¢) =—sgn(k(x)). Different-
ly from the conventional methods in (Franklin et
al., 1990 ; Friedland, 1996 ; Newman and Souccar,
1991 ; Pao and Franklin, 1993 ; Kim et al., 1999)
which modify the switching function near the
target region, a kind of feedforward approach is
suggested in this section. As shown in Fig. 1, the
robust minimum-time control (RMTC) in this
paper consists of the minimum-time trajectory
generator (MMT) and the robust perturbation com-
pensator (RPC) based tracking controller. After
all, the switching function has been removed in
the controller but the robust tracking controller
follows the minimum-time trajectory for a target
point. In conventional near time-optimal schemes,
the width of non-switching region (Franklin et
al., 1990 ; Pao and Franklin, 1993 ; Kim et al.,
1999) around the target point or the boundary
layer (Newman and Souccar, 1991) along the
switching function are determined through the
tuning process to avoid chattering, whereas the
RMTC is fundamentally free of chattering prob-
lem by giving up the switching control.

In (Hara et al., 2000 ; Uchida and Semba, 2002),
we can find reference following techniques related
to the minimum-time control of hard disk drives.
They provided efficient ways to find a reference
trajectory which can suppress residual vibrations
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Fig. 1 Robust minimum-time control (RMTC) struc-
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ture. MTT : minimum-time trajectory genera-
tor, RPC : robust perturbation compensator,
K (2) : tracking controller, P(z) : plant
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in track seek mode. However, it is too complex
and time-consuming to get the best parameters
and the solutions are based on simple double in-
tegrator model and moreover the solutions are
quite different from real minimum-time trajec-
tories. On the other hand, we stress that the fric-
tion term is needed to be included in developing
the minimum-time trajectory and all system un-
certainties which distort minimum-time perform-
ance should be effectively compensated by addi-
tional control function.

2.1 Minimum-time trajectory (MTT)

The minimum-time control problem is to find
a soluttion which minimizes the cost function,
J= /t \ jdt with the constraints of state equation,
i=f(x,r,t) and the input limit | 7|< finax. As is
well known, in terms of the Pontryagin’s mini-
mum principle, the minimum-time control law
is given by the bang-bang control (Athans and
Falb, 1966):

—1if 2(x) >0
+1 if 2(x) >0

where s(x) is the so—called switching function
and 2 (¢) is the normalized input (i.e., 2 () <1).
In fact, the heart of minimum-time control prob-
lem is to determine the switching function. How-
ever, the solution was known for a few specific

u(t)=—sgn(h(x))={ (1)

linear systems. For example, for a double inte-
grator plant, ¥=bu, the switching function is
given as A (y,y) =y+ (1/2b) || for zero target
condition, {v(¢;), v (¢7) }={0,0}.

Although a simple double integrator (or pure
inertia) model was popularly used for the mini-
mum-time control of many linear positioning mech-
anisms, it holds just for the applications where
the frictional force is negligible. A good example
is the track-seek mode in hard disk drives (Franklin
et al., 1990 ; Pao and Franklin, 1993 ; Kim et al.,
1999). However, for example, in positioning sys-
tems for semiconductor and flat panel display
manufacturing equipments, the friction is a ma-
jor obstacle to achieve fast and fine positioning.
If the friction term is not considered in the mini-
mum-time control of such applications, the con-
trol torques will have no margin to compensate
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the frictional disturbances.

Hence, we consider the mass—damper system
which includes viscous friction term as Hy+ By=
7. This can be rewritten as ¥+ay=>bu with |«|<
1 and also in state variable form, X;=x;, X:=
—ax>+bu, with x=[x; 2]"=[y y]. Then, by
integrating the 2nd order equation with the ini-
tial conditions : v (&) =vo, v (&) =, and =1,
we have

90 =L+ (5= LYo —alt-0)) @)

v =(Lo—L)(1—exp(—alt-0))
(3)
(t b) +¥o

O"

>y =Ln(1-45)—Latn @

for the input #=-1 and

v ==L+ (30t L) exp(~att-1)} )

v =(Lse+L ) 1—exp(—alt—1)) »
6
—%u—m+m

—y=Lm(1-¢15)—1

L%‘H’o (7

for the input = —1, respectively.
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position {mm)

Fig. 2 Family of minimum-time trajectories for the
plant, ¥ +10y=52. The upper limit y=0.5
m/sec of #=+1 curves and the lower limit
9y=—0.5m/sec of x=—1 curves are due to

the frictional effect
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The family of minimum-time trajectories for a
specific plant is shown in Fig. 2, where the curves
are not symmetric unlike double integrator plants
because the viscous friction limits the velocity
range to |y(#)|<b/a. According to the above
#=++1 and ¥=—1 family, the switching func-
tion for the target point, x () ={y (¢}, y(¢,) }=
{D,0} is given by

h(x) =y*sgn(37)£f1n<l+%|5)|>
(8)
1.

+;yo—-D

and an example is denoted in Fig. 3.

Now, for the zero initial state: {y{t), v(&),
%}={0,0,0} and the target condition: {y (%),
v(t;)}={D,0}, it is straightforward to derive
the following minimum-time trajectory (MTT)
for a class of mass~-damper systems, where the
switching time (%) can be determined by equat-
ing the two trajectories for acceleration and de-
celeration phase.

(1) when ¢<{f;: acceleration phase (#=-+1),

t=—Lm(1—V/1=exp{~(@/0)D}) (9

y(t)= llt-k b (exp{ —at}—1) (10)
() =2(1—exp(—at)) (1)
y(y)=—5h1<1——|y|) — (12)
(2) when £;<t<t;: deceleration phase (x=—1),
tf=ts+%1n(l+%y(tf)) (13)
y(8) =y (1) =2 (11,

1 b (14)

+L(y 0+ L) 1—ep{—alt—1)))

y(t) =y (t)exp{ —a(t—1t)}

~bexpl-att-y Y
v =5m(1+4151)~Lwip (9



1838 SangJoo Kwon and Joono Cheong

Figures 3 and 4 show the MTT for an arbitrary
plant in comparison with the pure inertia case,
where the asymmetry of velocity profile for the
mass—damper system is caused by the fact that
friction prevents acceleration but it is helpful in
deceleration phase. As the moving range to the
target gets longer, the asymmetry will become
clearer.

Remark 1: In deriving (9)-(16), we have used
the mass-damper model V+av=>bu with vis-
cous friction term only. However, if the Cou-
lomb friction identification data are available, the
equation of motion y¥+ay=>5b(u—r.) with the
normalized Coulomb friction f, >0 can be readily
utilized. In this case, the terms & in (2)-(4) and
(9)-(12) are changed to b(1—f.) and the terms
bin (5)-(7) and (13)-(16) to b(1+f.). Then,
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Fig. 3 Minimum-time trajectory (in phase plane)
for the plant: ¥+10y=>5% in comparison

with the pure inertia plant: y=35u
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Fig. 4

the MTT will be closer to that of actual systems.

22 Robust perturbation compensator (RPC)

The highlight to achieve the robust minimum-
time control in Fig. 1 is the robust perturbation
compensator (RPC) as well as the minimum-time
trajectory in the former section. The performance
of positioning system is degraded primarily by
time-varying nonlinear friction caused by hard
contact between moving parts as well as external
disturbances. Therefore, the tracking control per-
formance is greatly dependent upon how effective-
ly the system uncertainty can be compensated. The
disturbance observers (Kempf and Kobayashi, 1999 ;
Komada et al., 2000) and time-delayed compen-
sators (Youcef-Toumi and Reddy, 1992 ; Mittal
and Mengq, 1997) were widely applied as a ro-
bust control technique, which were considered as
a class of perturbation observers in {(Kwon and
Chung, 2002). The perturbation observer is char-
acterized by the adaptive control property which
can estimate the time-varying perturbation with
respect to the nominal plant. In this section, the
robust perturbation compensator {RPC) is for-
mulated as an extended version of the class of
perturbation observers.

First, we consider a discrete state-space model :

x(k+1)=Ax (k) +Bu(k) + ¢ (k) (17)

where the perturbation ¢ (%) includes all un-
modeled dynamics and external disturbances and
satisfies the matching condition to the control
input. Then, the perturbation can be equivalently

1000

800 © . pure inertia plant

600 o
velocity fimit _

400

200

0 0.2 04 0.6
time {(sec)

(b) Velocity (mm/s)

Minimum-time trajectory (position and velocity) for the plant: ¥+ 10y=5y in comparison with the

pure inertia plant : ¥y=5¢ (when D=100 mm, {s=0.2657 and £,=0.3315)
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descried as
Veq(B) =B (x (k+1) —Ax (k) —u(k) (18)

Based on this indirect perturbation model, the fol-
lowing perturbation observer can be constructed.

@B(k) =Q¢eq (k_l)
=Q- (B*(x (k) —Ax(k=1)) ~u(k—1))

As shown, it consists of model parameters, con-

(19)

trol input, and state signals which are available
at the current step %, where @ is the low pass
filter to cut off high frequency harmonics. That
is, the best estimate by the perturbation observer
is the perturbation one-step before. Although the
formulations are different, the notions of distur-
bance observers and time-delayed controllers are
fundamentally correspondent to the above per-
turbation observer.

Here, if we replace the state signals x (&) in
(18) with reference signals x4(%), a feedforward
type perturbation observer :

Ve (k) =Q(B* (xa(k) — Axa(k—1)) —u(k—1)) (20)

can be obtained as an alternative formulation to
(19). It has the advantages of no requirement of
feedback states by using reference signals. While
the perturbation observer in (19) reconstructs the
perturbation for the nominal plant, the feedfor-
ward perturbation observer in (20) can produce
perturbation estimates with respect to the desired
dynamics following the reference trajectory.

If we assume that the feedforward observer (20)
is applied to the plant, the closed-loop error dy-
namics will be still perturbed by ¥ (k) =¢ (k) —
¥r (k). Then, following the perturbation observer
technique described above, the residual perturba-
tion corresponding to the inter-sample variation
can be further attenuated by ¥z (k) =vr(k—1) =
@+ Vee(E—1) ~ (k). Finally, the total pertur-
bation estimate at the current step is given by

(k) =vr(E) +Ur(k)
=0s(k) + P+ vr(B) —Fr(k—1)

which is referred to as the robust perturbation

21

compensator (RPC) in this paper. It enables ad-
vanced perturbation compensation by utilizing
both feedback signals and feedforward ones from
the reference trajectory with no sensor noise and
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no dynamic lag.

In Fig. 1, the robust tracking control input is
defined as the sum of the outputs from nominal
feedback controller and RPC, i.e., u (k) =u(k) —
¥ (k), where any control logic such as PD or
PID rule can be chosen for the feedback control-
ler. If the feedforward loop to the RPC is cut
in (21), it is just equal to the standard pertur-
bation observer in (19). There exist some guide-
lines on how to choose the low pass filter @ in
(Komada et al., 2000 ; Kwon and Chung, 2002).
Considering the stability of the perturbation ob-
server (19), an useful analysis can be found in
(Kwon and Chung, 2002) but the feedforward
observer (20) does not produce any stability issue
as far as the control input is bounded.

Remark 2: With only the feedback part in
(19), the perturbation compensation input can
be rewritten as ¢ (k) =¢(k—1)+B*(x(k)—
Ax(k—1)) —p{k—1) without considering low-
pass—filtering. This means that the perturbation
compensator integrates the latter part which is
changed according to plant behavior. In other
words, the perturbation compensator has the in-
tegral and adaptive control property.

3. RMTC for Dual-Stage
Mechanisms

In the former section, the robust minimum-
time control (RMTC) which combines MTT and
RPC has been investigated as an alternative to
the switching control based sub-optimal methods.
By removing the nonlinear switching function in
controller, the RMTC does not produce chat-
tering or transient phenomena due to controller
change. In this section, the RMTC is extended to
the dual-stage mechanisms, the usage of which
is widely expanded to the applications where
both ultra precision and wide scanning range are
simultaneously required : for example, alighment
stage (Lee and Kim, 1997), machine tool (Kim et
al., 2001), and micromanipulation systems as well
as longtime concern about macro/micro robot
manipulators {(Sharon et al., 1993 ; Khatib, 1995)
and dual-stage hard disk drive (Yen et al., 1990 ;
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Schroeck et al., 2001 ; Li and Horowitz, 2000 ;
Suthasun et al., 2004) .

3.1 Inertial property of dual-stage mech-
anism

In robot manipulators, the effective inertia,
0w(A) perceived at the end-effector along a speci-
fied direction w is given by ¢, (A) =1/(wTA™?
w), where A{x)=(JA™J7)! is the operation-
al space kinetic energy matrix of a manipulator
with A the manipulator inertia matrix and J the
Jacobian between joint velocity and end-effector
one (Khatib, 1995). Then, in macro/micro (or
coarse/fine) manipulators, the effective inertia
satisfies the following relationship.

Ow (Ao) < Ow (Am) (22)

in the direction of motion w, where /A, and An
are the operational space kinetic energy matrices
associated with the overall macro/micro mani-
pulator and the single micro manipulator, respec-
tively.

In the dual-stage model shown in Fig. 5 with
the definitions of coordinates (yy,y,) and iner-
tias (M, Hz), the dual-stage has the Jacobian J =
[1 1]7 and the inertia matrix A=diag{H,, H}
and the fine stage inertia is An=H;. If we apply
the above principle to the dual-stage mechanism,
the effective inertia Hes at the end-point of dual-
stage along the task space coordinate y can be
readily derived as

BN Yz .

\\\}‘
ol
c;;:

x

N

o

, ()

N
W

L
Fig. 5 Dual-stage model. (¢1, c2) : viscous damping
coefficients. (i, &) spring constants
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1
[1 1) (diag{ H,, . }) ~'[1 1]7

_ H\H,
————~—I{1+]{2 < H,

This means that the effective inertia perceived at
the end-point gets smaller than independent sta-

Her=
(23)

ges and the dual-stage can produce larger accel-
erations.

3.2 Dual-stage control
The equations of motion for the dual-stage
model in Fig. 5 can be described as

Hyvitan+hkn=w+cv:+ky—u (24)
Hyy+ coye+ keva=1; (25)

which is a multi-input and multi-output (MIMO)
system. If the cross couplings between the two
stages are not negligible, it is natural to consider
MIMO control design {Yen et al., 1990; Li and
Horowitz, 2000). However, as is usually the case,
when the stages are structurally very stiff for axial
force and/or the coarse stage has much larger di-
mensions than the fine stage in parameter values,
the motion of one stage almost does not affect the
other one motion. In this case, the single-input
and single-output (SISO} control design is ac-
ceptable (Suthasun et al., 2004 ; Lee and Kim,
1997 ; Kim et al, 2001) for the following de-
coupled model.

Hyi+onw=wu+h (26)
Hz'yz F=u+ !02 (27)

where (i, ¥2) are perturbations including non-
linear friction, external disturbance, and other
model uncertainties which can be compensated
by the RPC loop developed in the former section.
Furthermore, the control architecture for dual-
stage system can be changed depending on sen-
sory condition, for example, whether the relative
position between the two stages and the end-
point sensing are available or not. Basically, the
dual-stage servo should be designed so that the
reference trajectory is tracked by the coarse stage
with large power and long travel range while the
fine stage corrects high frequency tracking errors.

In regard to the minimum-time control prob-
lem of the dual-stage, time-optimal seek trajec-
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tories for dual-stage HDD were investigated in
(McCormick and Horowitz, 1991 ; Yang and Pei,
1996), where the ideas were to make the coarse
stage overshoot the target point as much as the
fine stage stroke to reduce the seek time. In con-
trol point of view, such methods are not practical
since they require the fine stage to be saturated.
At the moment of range saturation, the fine stage
will lose its capability of high bandwidth com-
pensation motion.

By extending the RMTC in the former section
to the dual-stage mechanism, the overall control
architecture is denoted in Fig. 6, where the mini-
mum-time trajectory (MTT) is generated for the
coarse stage model and applied as a reference to
both end-point and coarse stage. If the fine stage
can successfully compensate the end-point track-
ing errors beyond the coarse stage bandwidth,
the overall minimum-time control performance
can be fairly enhanced by reducing the settling
time. In Fig. 6, the end-point error is defined
as e=7—y and it is equal to e=yr—y=yv—
(y1+3y2) =e1—y» This indicates that the end-
point feedback to the fine stage in Fig. 6 can be
altered by the relative position (y.) feedback with
the reference input of coarse stage error (e;). In
order to fully utilize fast and fine motion of fine
actuator with small travel ranges, it is very im-
portant to maintain small tracking error in the
coarse stage. The RPC added to the coarse ac-
tuator controller in Fig. 6 is expected to achieve
the robust .tracking performance in spite of pe-
rturbations such as nonlinear friction and abrupt
disturbances. In the same way, the RPC for the

RPC

Fig. 6 Robust minimum-time control architecture
for dual-stage mechanism. P;: coarse stage,
P : fine stage, NMC : null-motion controller
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fine stage could be added.

Since the movable range of most fine actuators
is extremely small (usually, under hundreds of
micron in piezoelectric actuators), the fine stage
motion could be easily saturated to the travel
limit for some large reference commands. During
the saturation interval, the fine stage loses its ca-
pability of compensating high frequency distur-
bances and it may occur wind-up phenomena.
Therefore, it is necessary to limit the input so that
it does not over the movable range at current time.
If the travel limit of fine stage is given by | ya|<
R, the movable range for the current position y.
is equal to

Smin=—(R+sgn(y2) | y2) <S(32) <R (28)
—sgn (yZ) ‘y2|=Smax
Then, the input to the fine stage controller can be

adjusted as

Smax if €= Smax
e*=35e  if Smn<e< Smax (29)
Smin if €= Smin

3.3 Null-metion control

In Fig. 6, when e, — 0 by the K; controller and
¢ — 0 by the K controller, it results in y,— 0
naturally. However, the null-motion control (NMC)
in this section is to accelerate the restoring action
of y2 — 0 using the internal motion of dual-stage.
In a dual-stage mechanism, due to the extra de-
gree of freedom, a null-motion exists between the
two stages which do not produce end-point mo-
tions. By using the null-motion capability of the
dual-stage, another set of control inputs can be
determined to minimally keep the distance of the
fine stage from the middle point without pertur-
bing the end-point motion. However, this prob-
lem has not been considered in other dual-stage
papers. As shown in Fig. 7, the null-motion con-
trol input (#i,#2) enables to coordinate the
dual-stage motion into the direction of extending
the movable range of fine stage for the same end-
point positions.

In fact, the null-motion control is a well-esta-
blished topic for robot manipulators with kine-
matic redundancy. In redundant mechanisms, the
static force relationship between end-effector (F)



1842

and joints (r) takes the following form :
r=]"F+I-]"]™") (30)

where J is the Jacobian matrix and the second
part corresponds to the null-space joint torques.
In (30), J™" is the generalized inverse of /7 and
7, is an arbitrary generalized joint torque vector
which will be projected onto the null space of
J7. By the way, a generalized inverse of J7 with
which the null-space joint torques do not pro-
duce any operational acceleration at the end-
point (i.e, which satisfies the so-called dynamic
consistency) is given by the inertia weighted pseudo-
inverse (Khatib, 1995):

J(@=A"J(JA™ D! (31)

where A is the manipulator inertia matrix.

Hence, the null-motion control inputs which
do not dynamically affect the task space (end-point)
motion can be determined as

w=U—-J T (32)

When applying the above equation to the dual-
stage model in Fig. 7 with /=[1 1] and A=
diag{ Hy, H>}, the NMC input is readily derived
as follows.

[
Th— =
72

For example, if the generalized joint torque is

_i(&+m>
A\ I
_L<HI+HZ>T"
i\ I

(33)
1

(w1, ) with no NMC, (¥1,35) : with NMC
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given by the following PD rule:
To=— /?pyz - kuj"z (34>

the input (33) will attract the fine stage to the
middle point while not perturbing the end-point
motion.

4. Simulation Study

PTOS vs. RMTC

Now, it is verified how much the RMTC is
beneficial than other sub-optimal methods through
time-domain simulations. On behalf of sub-op-
timal methods, we select the PTOS (proximate
time-optimal system) algorithm (Franklin et al,
1990). Although the original PTOS was devel-
oped for pure inertia plants, it can be modified for

-mass-damper systems as follows.

u(t) =—sat<£ﬁ>

[1)]
—sgn(k*(x)) if |h(x)|>0 (35)
- —g if |h(x)|<@

where @ is the boundary layer along the switch-
ing function 4(x) in (8) and the modified switch-
ing function %#*(x) is given by

I(x)=—e(t) —sgn(xz);bz—ln<l+%lxz|—@>

B x)= 36)

it e (8>3
if [e(t)|<y

+%xz
k() =—e(t) +hux,

with x1=y, x:=7%, e(¢) =D—x:1(¢) the position
error, and y; the width of linear region. Given
the value of v, the other parameters @ and A
can be determined using the continuity condition
at (x1,%2) = (y,v1) : Ia(x) =h2(x) and hi(x) =
h(x).

While, the RMTC algorithm is the Fig. 1 itself.
Given the model parameters (b,5), the MTT in
(9)-(16) can be readily obtained. In the case
of zero-order hold (ZOH) sampled-data system
with sample time T, the discrete-time model in
(17) has
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1, _ar
A— 1 a(l e~ ) d
\_O e—aT
- 37)
i( T+L(e“”—1)> (
a a
B=l" b
AL — ,—aT
L a (d (1 ¢ )

for a mass-damper system ¥V-+ay=bu, which
leads to the determination of the RPC input
#(k) in (21). Then, the robust tracking control
input is given by

u(k)=p(k) — ¢ (k)
=Kpe (k) +Kpe (k) — ¥ (k)

The plant model for the controller design is given
by ¢=10 with @=10 and b=S5, the same as in
Figs. 3 and 4, but the real plant is assumed to be
Yr+aryr=>b(u—f.+d) with model uncertain-
ty ar=a(1+A;) and b,=0b(14+A,), Coulomb
friction f;, and external disturbance d. Consi-
dering the sensor model, the position measure is
given by x:(k) =y, (k) +v (k) where the sensor

(38)

500

O B
Q [=
= [<]

velocity(mm/s)
N
[«
f=)

noise is v (k) ~N(0,6%) with g=1 um and the
velocity is determined by the filtered derivative :

%2(B) =wxa(k—1) + (1—w) (x1 (k) —x:(k—1))/ T (39)

with w=0.3 and the sampling time 7 =1 msec.
In the simulations, PTOS parameters for a best
performance were tuned as y;1=0.1lmm, ®=0.5
mm, and £,=0.052 and RMTC parameters were
Kr=90°, Kp=2X085XyK,, and the Q-filter
for RPC: Q(z) =0.15/1—0.852"%. The marginal
input over =211 was assumed to be |%|<1.3.
Figures 8 and 9 are the results for PTOS and
RMTC respectively with the following four cases.

Case 1: No uncertainty is involved.

Case 2 : 10% model uncertainty is considered as
ar=1.1qg and b,=1.1b.

Case 3: Coulomb friction is inserted as
fe=+0.1 [V] for >0 and
fe=—0.1 [V] for y<0.

Case 4: External disturbance
d (1) =0.2sin(40¢) [ V] is added.

0.18

[=]
iy

error{mm)
o
(=]
w

100
0 .
0
1
-100 - -0.05
0 20 40 60 80 100 120 0 02 04 06 08 1
position (mm) time (sec)
Fig. 8 Performance of PTOS with different perturbations (Case 1: no uncertainty, Case 2: parametric
uncertainty, Case 3 : Coulomb friction, Case 4 : sinusoidal disturbance)
500 .
e I
400 e \ |
Vol
@ 300 v
£ \ T
€ oo \! g
20y | :
9 / h @
S 100 Q;
O mmmm — — - — -
|
-100 . ~0.05
0 20 40 60 80 100 120 0 02 04 06 08 1
position (mm) time (sec)
Fig. 9 Robust performance of RMTC with different perturbations (Case 1 : no uncertainty, Case 2 : parametric

uncertainty, Case 3 : Coulomb friction, Case 4: sinusoidal disturbance)
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0 0.2 0.4 0.6 0.8 1
time (sec)

Fig. 10 Performance comparison between RMTC and PTOS (case 3:

As shown, the PTOS performance is much de-
pendent upon system uncertainty since it does
not contain any function to compensate it, while
the RMTC maintains relatively small settling
time around the target (D=100 mm, £,=0.3315)
for all sort of perturbations. In Fig. 10 for Case 3,
it shows that the RPC well reconstructs the Cou-
lomb friction (¥ (#)). The robust performance of
RMTC was enabled by the MTT following strat-
egy from the initial time and the RPC to attenuate
modeling error and other perturbations.

Dual-Stage RMTC

To confirm the utility of the RMTC for dual-
stage mechanisms, we consider the coarse actuator
model: Y1+ av1=biuy with (a1, b) =(10,5) used
in the above RMTC simulation and also assume
the fine actuator model: ¥+ ay.=bsuz with
(@, b2) =(10,50) . Then, the inertia and damping
coefficient of the fine actuator correspond to the
one tenth of the coarse actuator respectively, that
is, Hi=10H; and B,=10B; in (26) and (27). B
applying the dual-stage RMTC loop in Fig. 6, the
result in Fig. 11 was obtained for the same con-
dition as the Case 3 in the above simulations. As
shown, the coarse stage follows the minimum-
time trajectory and the tracking error occurred in
the coarse stage is well compensated by the high
bandwidth motion of fine stage. As a result, the
dual-stage maintains smaller tracking error at the
end-point and the settling time to the target has
been more reduced. In addition, comparing Fig.
11(a) with 11(b) explains the effect of the null-
motion control (NMC). When the NMC input
described in (33) was added to the both actua-
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input(Volt)

0.2 04 06 0.8 1
time (sec)

Coulomb friction)
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(a) Dual-stage RMTC

0.15

o fine stage compensation (y,) :
0'1 ,,,,,,,,,,,,, ::... coafsesfagae”or(e) ............. ‘ ............ B
3 , end-point error (e) .

E 005 oo™ /m&“‘ AAAAAAAAAAAA [ARRRICIEEN ETTPRTTPIOPN 4
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o2 oa ) ) 1
time {sec}
(b) Effect of NMC
Fig. 11 (a) Performance of the dual-stage RMTC

(without null-motion control) (b) effect of

null-motion control

tors, the relative motion between them was fairly
reduced but the end-point motion was almost not
changed. This is because the NMC makes the fine
stage restore to its neutral position without pe-
rturbing the end-point motion.

5. Experiment

To experimentally validate the proposed robust
minimum-time controller (RMTC), two linear
stages were mounted in parallel as shown in Fig.
12, where both bottom and top stage are driven
by BLDC electrical motors through ball-screw
transmissions and the parameters for plant model:

Hy+cy,=u—Cs (i=1,2) with H;[V/(m/s* ]
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the effective inertia, ¢;[V/(m/s?)] the viscous
damping coefficient, and C,,[V] the Coulomb
friction were identified as /,=0.2020, c;=2.25§
for the bottom stage and H.=0.1665, (C,=1.35
for the top stage. As well, the Coulomb frictions
were found as on the average C;,=0.11, Cr,=0.09
in positive direction and C;,=0.13 and C;,=
0.29 in negative direction, respectively. Although
the two actuators in Fig. 12 have the same me-
chanical and electrical characteristics, the coarse/
fine dual-stage motion can be mimicked by ad-
justing the motor torque and control gain so that
the top stage has much higher servo bandwidth
{e.g., over five times) than the bottom stage.
First, it is investigated how much the robust
perturbation compensator (RPC) can improve the
tracking control performance comparing with the
standard perturbation observer when a system is
affected by arbitrary perturbation. We applied the
control loop in Fig. 1 to the bottom stage in Fig.
12 but with the reference trajectory in Fig. 13(b)
instead of MTT. The closed-loop setup consists
of Pentium processor, D/A board, BLDC motor
with enceder, and counter board. The result of
Fig. 13(a) indicates the tracking error when the
RPC in (21) and the standard perturbation ob-
server in (19) are applied respectively. In both
cases, the same nominal feedback control law:
pu=kpe+Kpé and the same low pass filter : Q(2) =
0.1/1—0927! were used and the same sinusoidal
disturbance input ¥ (¢) =3 sin(20¢) [ V] was add-
ed to the control torques. As shown, the RPC
enabled better tracking performance thanks to
the residual perturbation compensation capability
with both feedback and feedforward signals.

Fig. 12 Dual-stage experimental setup
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Secondly, the RMTC loop for dual-stage in
Fig. 6 was applied to the dual-stage setup in Fig.
12. The MTT in (9)-(16) was determined for
coarse stage model parameters. Since the coarse
stage and fine one in Fig. (2 actually have the

200
100}
g ool
B
E
~100
...2000
20
£,
-
time{sec)
(b) Reference trajec
Fig. 13 (a) Performance comparison between the
RPC (21) and the perturbation observer (19)
for sinuspidal disturbance ¥ (#) =3 sin(20f)
{V1, (b) reference trajectory
0.15 fine s(age compensat«on (y ) T
O i gt e Tl
0.05
£ o =
-0.05 e
’__0.1 . 1
0 0.5 1 15 2
{a) With no NMC
0.15 - , -
o1t e stage compensation (v,)
' coarse slage error (e )
g 0 W m :
~0.4 j -

o8 1 15 2
(b) With NMC

T T T

0.5 o1 15 2
time(sec)

{c) Refernce trajectory (MTT)
Fig. 14 Experiment of dual-stage RMTC : (a) with-
out null-motion control. (b) with null~mo.
tion control. (¢) reference trajectory
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same physics, the same control law of PD con-
trol plus RPC was applied to both stages. But, in
order to implement dual-stage motions by coarse
actuator and fine one with different bandwidths,
the control gains have been tuned so that the
closed-loop bandwidth of fine stage is five times
higher than that of coarse stage. As shown in Fig.
14, the tracking error occurred in the coarse stage
was actively compensated by the fine stage motion
and the end-point maintained small tracking er-
ror. As a result, the settling time of end-point to
the target point has been fairly reduced by fast
correction motion of fine stage.

As well, the relative motion between the two
stages was much reduced by the null-motion con-
trol (NMC) action in Fig. 14(b) in comparison
with the case of with no NMC in Fig. 14(a), but
the end-point error was almost not changed. This
validates that the NMC input (33) which satisfies
the dynamic consistency attracts the fine stage to
its neutral position but does not perturb the end-
point (task space) motion. In the experiment, al-
though no friction compensation scheme was ap-
plied, the coarse stage showed zero steady-state
error. This is because the RPC loop works as a
good friction compensator. Although the above
experiment is a restrictive result where the real
fine actuator is not involved, it is sufficient to
prove the effectiveness of RMTC for dual-stage
mechanism in Fig. 6.

6. Conclusion

In this paper, the robust minimum-time control
(RMTC) was investigated as a reference follow-
ing approach and it was extended to the coarse/
fine dual-stage mechanism. It consists of the mini-
mum-time trajectory (MTT) generator for a mass-
damper system, the robust perturbation compen-
sator (RPC) to mitigate system uncertainties, and
the null-motion controller (NMC) for the dual-
stage mechanism. It was stressed that the viscous
friction term should be considered in generating
minimum-time trajectories and the Coulomb fric-
tion should be compensated to achieve real mini-
mum-time control. The simulation and experi-
mental results suggest that the RMTC is a good

alternative to other switching function based
sub-optimal controllers, specifically when the sys-
tem model is roughly identified and the position-
ing system is under heavy friction, abrupt load
change, and large external disturbance.
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