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Based on Banach fixed point theorem, a method to calculate nonlinear superposition for three

interacting Stokes” waves is proposed in this paper. A mathematical formulation for the non-

linear superposition in deep water and some numerical solutions were investigated. The authors

carried out the numerical study with three progressive linear potentials of different wave

numbers and succeeded in solving the nonlinear wave profiles of their three wave-interaction,

that is, using only linear wave potentials, it was possible to realize the corresponding nonlinear
interacting wave profiles through iteration of the method. The stability of the method for the
three interacting Stokes’ waves was analyzed. The calculation results, together with Fourier

transform, revealed that the iteration made it possible to predict higher-order nonlinear fre-
quencies for three Stokes’ waves’ interaction. The proposed method has a very fast convergence

rate.
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Nomenclature

a; . The wave amplitude

B Bernoulli’s Operator

g . The gravity acceleration

k: : The wave number

P, : The pressure of the atmosphere

© . The constant fluid density

yes . The free-surface of the perturbation solu-
tion
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7 . The free-surface of the iterative method
| *le: The sup-norm

w: . The wave frequency

Q; ! Angle measured from positive x-axis

1. Introduction

A considerable number of studies have been
made on the nonlinear water wave profiles. Most
of the nonlinear water wave profiles has been
treated based on the perturbation theory and
CFD (Computational Fluid Dynamics) methods
ever since the appearance of Stokes’ nonlinear
wave theory (Stokes, 1847). For example, com-
putational and theoretical studies of the nonlinear
wave profiles could be found (Tsai et al., 1996 ;
Dias and Kharif, 1999 : Clamond, Grue, 2001 ;
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Nicholls, Reitich, 2001). On the other hand, there
has been a fixed point approach to water wave
problem. The fixed point theorem has been suc-
cessfully applied to many fields of engineering
and science to deal with nonlinear problems. One
example of the application of the fixed point
theorem to the wave problem is given in Bona and
Bose (Bona and Bose, 1974). They examined the
question of the existence of solitary wave solu-
tions to simple one-dimensional models for long
waves in nonlinear dispersive systems.

Recently, with the help of the fixed point theo-
rem, Jang and Kwon (2005) proposed an iterative
method to estimate nonlinear wave profiles for
one wave train of progressive wave, which was
quite different from the traditional perturbation
method for nonlinear wave profiles.(Jang and
Kwon, 2005 ; Jang et al., 2005(a) ; 2005(b); 2005 (c);
2006 (a); 2006(b) ). The prsent paper is aimed at
an application of the method to the wave interac-
tion problem, that is, the nonlinear interaction of
three Stokes’ waves in deep water. Only a few
studies have been done on nonlinear interacting
wave profiles for more than two Stokes’ waves.
Pierson (1993) has studied about perturbation
solutions for sums of interacting Stokes” waves in
deep water. However, the derivation of high-or-
der solutions is too lengthy to proceed, even when
three Stokes’ waves are considered to be summed.

The advantage of the present study over the
traditional perturbation approach, which becomes
very complicated when the order of nonlinearity
increases (Pierson, 1993), is the efficiency of the
formulation. There is no need for lengthy deriva-
tions with respect to small parameters to construct
a series of linearized equations from the nonlinear
free surface boundary conditions, as is the case
with the perturbation approach. Once the con-
struction of the operator, which has a fixed point,
is accomplished, obtaining the solution is straight-
forward. Simple iterative procedures with a non-
linear operator will suffice. It was concluded that
the proposed method, which is based on non-
linear contraction mapping, was a very powerful
tool to realize nonlinear superposition of three
Stokes’ wave profiles in a very easy manner in
terms of programming. It was demonstrated that
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the proposed method gives very accurate numeri-
cal results for the nonlinear superposition when
compared with those of Pierson (1993): the present
study succeeded in finding nonlinear higher-or-
der Fourier’s frequencies, which could not have
been found in the Pierson’s perturbation solution
of second order. The importance of multi-com-
ponent wave interaction can be stated as follows.
There is no such thing as a monochromatic wave
in the real ocean. A good example of non-mono-
chromatic wave is a confused sea. Even in the case
of swell many frequency components of wave
co—exist. Therefore when it comes to the real
ocean we need to consider many components of
wave. The natural step to simulate real ocean is to
develop a theory to take into account of many
component interaction more than two.

In the study, we began with the mathematical
formulation of three interacting Stokes’ wave pro-
files in section 2.

The detailed construction of the operator in the
case of deep water is shown in Section 3. The
Bernoulli’s equation has been interpreted as a
nonlinear operator with respect to the free surface
elevation. It is proved that the nonlinear operator
constructed from Bernoulli’s Equation is a con-
traction mapping (Deimling, 1985). The numeri-
cal results including FFT analysis for several
wave slopes are shown in Section 4. To test the
efficiency of the proposed method, the results
were compared with Pierson’s (1993) wave prof-
iles of three interacting Stokes’ solutions. Numer-
ical convergence tests were conducted based on
sup-norm errors to examine the characteristics of
the numerical convergences for the iterative solu-
tions. The comparison revealed that the results
showed quite a good agreement with each other.
The rate of convergence for the proposed operator
was also very fast. As a result, all the computa-
tions achieved convergence in less than 10 itera-
tions with respect to a specific tolerance.

2. Fixed Point Approach to Three
Interacting Stokes’ Wave Profile

The amount of fluid is assumed to be homo-
geneous and the fluid itself incompressible and
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inviscid. In addition, the fluid motion is irrota-
tional, such that a velocity potential function ex-
ists. Suppose that we consider a free surface flow.
A Cartesian coordinate system (x,y,z) is adopt-
ed, with z=0 the plane of the undisturbed free
surface and the z-axis positive upwards. We shall
restrict the discussion to plane harmonic waves
that travel in the x-axis. We begin with three
linear progressive wave potentials in deep water
with different wave numbers 4;>0 for 1=1,2,3
and consider their linear superposition @sum :

Psum™= ¢1+ ¢2+ (223 where ¢i(€i9 Z)

=88 pmzgin g, (i=1,2,3)

[}

(1)

where g, a;, and w; represent the gravity acceler-
ation, the wave amplitude and frequency, respec-
tively. The product k;a;, the wave slope, is as-
sumed small for 7=1,2,3. The symbol &; denotes
the phase function of progressive waves, that is,
kix — w;t for 1=1,2,3. The linear dispersion rela-
tion in deep water, wi=gk; for 1=1,2,3 is as-
sumed. The vertical elevation of any point on
the free surface of nonlinear superposition of
three Stokes” waves may be defined as a function
z=7(x,t). The surface tension being negligible,
then, by applying Bernoulli’s equation to the free
surface it becomes

a¢sum 1 . & ~

where f (¢), ¢, P, and p stand for Bernoulli’s con-
stant, the velocity potential, the pressure of the
atmosphere, and the constant fluid density, re-
spectively. Taking Bernoulli’s constant f(#)=
P,/ o, we have the approximate expression for the
free surface for the three Stokes’ wave interaction
as

UQ_L[M%WW.WW} ©)

gl ot
The right-hand side of (3) may be viewed as an

z=7

operator for the free surface for wave interaction,
in such a way that we can define a new operator
B. We shall call B a Bernoulli’s operator in this
study :

(4)

z=7

B(y) = —é[a%%Jr%V%um-V%m]
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Then Bernoulli’s operator B can be easily con-
firmed to be nonlinear, and (3) can simply be
written as

7=B(7) (5)

As shown in (4), wave profile 7 is invariant
under the nonlinear operator B: it is called a
Banach fixed point (or function), 7. If the opera-
tor, B, satisfies the following inequality for some
constant 3<1: ’

(6)

then B is considered a contraction mapping. Wave
profiles of interaction for three Stokes’ waves are
realized as the limit of the following sequence

77k+1=B(77k) (7)

with the initial condition for zero function 7,=0
(Roman, 1975).

3. Construction of Bernoulli
Operator

Substitution of (1) into (4) and calculation
yield the explicit form of Bernoulli’s operator as
follows :

kg7

B(7) =ae*"" cos 01—%kla?e2’””+aze cos &

—%km%e”’”-l—aaek@” cos &—%ksa%ez’“"

—aa kb 7 cos (61— &)
— maskiks e cos (6— 6s)
— maskoks eF1H7 cos (B— )

(8) is based on the three linear potentials of

(8)

periodic plane waves on deep water. If we set
a:=a3=0, Bernoulli’s operator would be reduc-
ed to only the sum of the first two terms, that is,
ae™” cos 6i—1/2 kiaie®™”
and Kwon (2005) for a single gravity wave train.
The terms in (8), a:e**” cos 6;— (1/2) k:a*e®™,
(7=1,2,3) represent a Bernoulli operator due to
a single wave train @; in (1). The last three
terms — a:a;v kik;e**P7 cos(0;— 0;) are closely
related with a nonlinear interacting wave pro-

, as is the case of Jang

file between two trains of gravity waves @; and
@;(4,7=1,2,3) in (1).
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If we substitute (8) into (6) and employ trian-
gle inequality and smaliness of wave slopes, then
we arrive at

B=hka(1+ha) +ka:(1+ka) +kas(1+ kas)
+d1az(k1+k2) Y k1kz +alas(k1+k3) x/klka (9)
‘|‘dzas(kz+ ka) Vhokes

Here the constant /3 is known as the contraction
coefficient 8 (Zeidler, 1986). In order for the
iterative scheme to converge, we need a criterion,
that is, the contraction condition, 3<1:

k1611(1 +/é1a1) +kzaz(] +kzaz> +/€3623( 1 +ka3)
t+ama (bt k) JRE +awas( kit k) VR (10)
+aas (bt ks) Viaks <1

If wave conditions such as wave numbers and
amplitudes are satisfied with the inequality (10),
then the iteration scheme (7) works and yields
wave profiles of three interacting Stokes’ waves.
The existence and uniqueness of the solution for
the interacting wave profile was shown by Jang
et al. (2006 (b)) . (9) illustrates to us that the value
of the contraction coefficient tends to increase as
wave slopes become large. Therefore, the con-
traction coefficient can be thought of as a measure
of nonlineararity for interacting wave profiles.
The contraction condition, 8<1 in equality
(10) guarantees that the mapping B is contrac-
tion. In order to satisfy the fixed point theorem,
we need to satisfy two additional conditions : So-
lution space is a complete space on which the
mapping B is defined should be chosen, and the
mapping B maps the space into itself. First, for a
fixed time, any continuous real valued function
can be defined for the Bernoulli operator in Eq.
(8): i.e., it is possible for the Bernoulli operator
in Eq. (8) to have domain space of continuous
functions. Therefore, it is natural to introduce a
solution space X of continuous functions (to
which the interacting wave profiles 7 belong)
with an usual topology : we introduce the uniform
metric or sup-norm in this paper (Roman, 1975).
Then the solution space X of continuous func-
tions equipped with the uniform metric or sup-
norm- topology is well known as complete (Roman,
1975). Second, from calculus, it is known that
the multiplication, subtraction, and composition

operations of continuous functions yields a con-
tinuous function. Therefore, the mapping of the
Bernoulli operator in Eq. (8) maps X into itself,
because the mapping B involves the multiplic-
ation, subtraction, and composition operations.
Therefore, all the three conditions for the fixed
point theorem are satisfied for the mapping B in
this paper.

4. Numerical Results

In this section, we will present the numerical
results of wave profiles of three interacting Stokes’
waves. For solutions of the wave profile, (7) is
iterated with an initial condition for zero function
of mean water level (for z=0), that is, 7=0. For
comparison purposes, the three interacting Stokes’
wave profiles of perturbation second order solu-
tion suggested by Pierson (1993) was employed.
For numerical study, we examine four different
wave profiles. Their wave information is tabulat-
ed in Table 1 and 2. The contraction coefficients
corresponding to the wave-parameters are also
shown in Table 1 and 2. Since they are less than
1, our iteration scheme (7) is known to converge.
(Roman, 1975)

Case 1 (Table 1) represents a mild slope and
case 4 (Table 1) the other extreme. For the
numerical convergence test, we calculate the fol-

Table 1 Various Wave-Parameters investigated

C
ase kb a1 ke az ks as B

Number

Case 1 | 0.3 |0.05| 04 |0.05| 0.5 [0.05(0.0636

Case 2 | 0.3 |0.10| 0.4 |0.10] 0.5 |0.10|0.1345

Case 3 | 0.3 |0.15} 0.4 |0.15 0.5 [0.15|0.2127
Case 4 | 03 022] 04 [0.22] 0.5 |0.22|0.3161

Table 2 Various Wave-Parameters for amplitude
variations

C
ase ke a1 ke az ks as B

Number

Case 1 | 0.3 (0.07] 0.4 |0.10} 0.5 |0.16]0.1610

Case2 | 0.3 (0.08| 04 [0.15| 0.5 |0.25}0.2530

Case 3 | 0.3 (0.10} 0.4 |0.18| 0.5 {0.30|0.3160
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lowing coefficients, which are norm errors,

_ " 7pB— 1In "oo
= el (1

as a function of the number of iterations 7. The
notation [+ | represents the sup-norm. Here the
coefficient is normalized by the norm of the
Pierson (1993) perturbation solution of the sec-
ond order, denoted by 7ps.

For the four different wave-parameter cases,
the coefficient values for . are plotted in Fig. 1,
which are presented in terms of the number of
iterations. Figure | shows that our solution strat-

Test for Numerical Convergence

[ 1345 2127 1

8
Number of Ieratian

Fig. 1 Test for numerical convergence using the
sup-norm
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€gy 7n is converging to the nonlinear perturbation
solution 7pp, regardless of all the wave-parameter
cases. From this analysis, it is clear that the norm
eITOr [ is Teduced as the number of iterations »
increases and that their convergence rates are very
high. We confirmed all of the cases converged
within less than 10 iterations.

In Fig. 2 the process by which the wave profiles
change is shown (#==0). The change is shown in
terms of the number of iterations. In Fig. 3, the
obtained converged solutions (£=0) are com-
pared with the corresponding linear. and non-
linear second-order wave profiles as suggested by
Pierson (1993). Fig. 3 shows an excellent agree-
ment between the results obtained by the pro-
posed scheme and those of Pierson. Time evolu-
tions of wave propagation are illustrated for the
case 4 (Table 1) and 3 (Table 2) in Fig. 5. It is
not difficult to observe dispersive waves are pro-
pagating to positive x-axis.

To examine the nonlinear behavior of the solu-
tion, the Fourier transform was introduced. The
amplitude spectra of the solutions are presented
in Fig. 4. To highlight the peaks in the ampli-
tude spectrum, linear-log coordinates are illu-
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Fig. 2 Convergence behavior of 2,
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strated. For the four cases, three dominant peaks  ponents at 2k; (£=0.6), 2k, (£=0.8) and 2ks(k=
at b (£=0.3), ky(£=0.4) and ks(£k=0.5) appear  1.0), the sum wave numbers at &+ k.(£=0.7),
clear as is expected. They are the fundamental i+ (£=0.8) and k. ks(2=0.9) even though
wave number components in this study. their magnitudes are very small compared to those

In Fig. 4, we can see the peaks of the proposed  of the fundamental wave number components.
scheme due to the double wave number com-  When the peaks of the proposed scheme are com-
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pared with those of the Pierson’s solution, they  are in good agreement with each other for all four
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cases.

However, in Fig. 4(a), it may be hard to ob-
serve the peaks due to the difference wave num-
bers at b —ki (k=0.1), ks— ki (£=02) and ks—
k2(£=0.1) in the amplitude spectrum : the hidden
peaks are recovered when the contraction coeffi-
cients are relatively larger cases as shown in Fig.
4(b), (c) and (d). The interacting components
are illustrated in Table 3. The numbers corre-
sponding to the frequency components as shown
in Table 5 are written in Fig. 4(d).

An interesting phenomenon was observed : the
proposed scheme yields peaks at higher frequen-

Table 3 Various Wave-Parameters investigated
(effect of wave numbers)

NS;S;I hla|k|a|k|a| 8

Case 1 0.1 100502 006} 0.3 |0.07|0.0395
Case 2 0.3 005/ 04 {0.06] 0.5 |]0.07]0.0795
Case 3 08 [005] 1.3 |10.06| 1.5 [0.07(0.2734

1957

cies, as shown in red-colored arrows in Fig. 4
(d). Their existence cannot be explained by the
Pierson’s perturbation solution of second order.
They may be corresponding to higher order non-
linear frequencies for three interacting Stokes’
waves, which should be investigated further.

To investigate the effect of a variation of wave
numbers, we tabulate wave parameters in Table
3. With the data of the parameters, we calculate
interacting wave profiles and their FFT results as
shown in Fig. 6. It is interesting to find that
strong nonlinear interaction (Case 3) is observed
in the zone of high wave numbers when compared
to Case 1.(Case 3 corresponds to larger wave
number)

Finally, let us add some calculation about two
dimensional calculations of the dispersive waves
through the iteration method in Eq. (7). At first,
it is needed to introduce the vector wavenumber
%:=[(kx):, (ky):] in order to describe propagat-

ing directionality of waves :

T T 7
(38 J 1 i T ot e W
¢ ~~~Plerson Wrre

o8 H ' : S -Linews Wave
H . == frigrson Ware

Wate Exevation

ot [ T : . eima Wi b
¢ . | e eFiemWor ||

T Propased Scheme |

e Pleraon Weve

T L inear Wave
e Py 74 Scheme

o} i i

(b) Case 3 (Table 2)

Fig. 5

Time evolution of wave profiles
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Fig. 6 Amplitude spectra (effect of wave numbers)
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Fig. 7 Illustration of 2D plane wave calculation
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z
{l

N,

Fig. 8 Definition sketch for vector wavenumber %

kx=|E| cos 2, ky=|E|sin 2

where the symbol £; denotes an angle measured
from positive x-axis as shown in Fig. 8.

Then the phase function in Eq. (1) takes the
form

0:(x, v, 1) = (kx) s cos i+ (kyy sin £2:— wit)
i=1,23)

Wave parameters for two dimensional waves are
tabulated in Table 4. And their two dimensional
numerical calculations are depicted in Fig. 7.

Table 4 Wave-Parameters for two dimensional

waves
- 2 z 2 L. 2
kil & (deg.) | kel ax (deg.) [l @ (deg.)

0.3 0.15) 0 0.4 (0.15) 15 0.5 (0.15} 30

Table 5 Peaked frequencies in amplitude spectra

Indicated Frequency Numerical Value
Number Components of Frequency
1 ky 0.3
2 ke 0.4
3 ks 0.5
4 2k 0.6
5 2k 0.8
6 2/ 1.0
7 itk 0.7
8 kot ks 0.8
9 kst ks 0.9
10 ko—F 0.1
11 fs— k1 0.2
12 ks— ke 0.1

5. Concluding remarks

By applying Banach fixed-point theorem to
Bernoulli’s Equation, we have proposed a method
to realize an interacting wave profile for three
Stokes” waves in deep water. The formulation
and process of the computation involved are very
handy even though three Stokes’ wave interac-
tions are taken into account. This is a completely
different point of view when compared to the per-
turbation approach of Pierson (1993). The nu-
merical results of the method are compared with
those of Pierson’s Formulation. The comparison
revealed that the results showed quite a good
agreement with each other. It is interesting that
the iteration, based on linear progressive potential
solutions, enabled us to observe the higher-order
nonlinear frequencies for three interacting Stokes’
waves that Pierson’s second order solution could
not predict.

In conclusion, we have proposed a method,
which was based on nonlinear contraction map-
ping and was proved to be a very powerful tool to
estimate a nonlinear interaction for three Stokes’
wave profiles in a very easy manner.
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