물리적 특성 모델링에 기반한 라이팅 환경의 랜더링 기법

Rendering Method of Light Environment Based on Modeling of Physical Characteristic

  • 이명영 (경북대학교 전자전기컴퓨터공학부) ;
  • 이철희 (안동대학교 컴퓨터공학) ;
  • 하영호 (경북대학교 전자전기컴퓨터공학부)
  • Lee, Myong-Young (School of Electrical Engineering and Computer Science, Kyungpook National University) ;
  • Lee, Cheol-Hee (Major of Computer Engineering, Andong National University) ;
  • Ha, Yeong-Ho (School of Electrical Engineering and Computer Science, Kyungpook National University)
  • 발행 : 2006.11.25

초록

본 논문에서는 라이팅 환경을 구성하고 있는 광원과 물체의 광학적인 특성을 모델링하여 특정 위치의 관찰자의 시야에 들어오는 3차원 영상을 추정하는 알고리즘을 제안한다. 이전의 논문에서 제안했던 기법을 개선하고, 실제의 자동차 리어램프를 실험에 적용하여 추정한 빛자극과 측정된 빛자극을 비교하여 검증하였다. 랜더링 알고리즘으로는 컴퓨터 그래픽에서 많이 사용되고 있는 광선추적기법을 이용하고, 정확한 실사영상(realistic image)을 재현하기 위하여 물체의 물리적 특성을 반영하는 분광분포를 고려하였다. 물체의 빛 표면반사 및 투과특성과 광원의 빛방출 기하특성을 모델링하여 시점으로 들어오는 빛에너지 추정의 정확도를 개선하였다. 또한 추정된 빛에너지를 인간시각이 느끼는 동일한 색자극으로 디스플레이에 표시할 수 있도록 모니터특성화기법을 적용하여 실사영상에 근접한 영상을 재현하였다.

In this paper, we propose an improved reproduction algorithm for a realistic image of the real scene based on the optical characteristics of the light sources and the materials at the lighting environment. This paper is continuation of the previous study to improve the modeling method of the light sources and the materials and apply this to the real rear lamp of automobile. The backward ray tracing method is first used to trace the light ray from a light source, and also considers the physical characteristics of object surfaces and geometric properties of light radiation to estimate accurately the light energy incoming toward to human eyes. For experiments and verification of the proposed method, the simulation results are compared with the measured light stimuli. Accordingly, the simulation results show that the proposed algorithm can estimate light energy well and reproduce the visually similar image with a scene incident on a sight of viewer.

키워드

참고문헌

  1. 이명영, 이철희, 이호근, 하영호, '실사영상 재현을 위한 분광분포 기반의 광선추적기법,' 대한전자공학회 논문지, Vol. 41, No.1, pp. 37-46, 2004년 1월
  2. Thomas A. Funkhouser, 'A Visibility' Algorithm for Hybrid Geometry- and Image-based Modeling and Rendering,' Computers & Graphics, Vol. 23, pp. 719-728, Oct. 1999 https://doi.org/10.1016/S0097-8493(99)00094-1
  3. Andrew Woo, Pierre Poulin, and Alain Fournier, 'A Survey of Shadow Algorithms,'IEEE Computer Graphics and Applications, Vol. 10, No.6, Nov. pp. 13-32, Nov./Dec. 1990 https://doi.org/10.1109/38.62693
  4. J. Arvo, 'Backward Ray Tracing,' Tutorial Notes on the Developments in Ray Tracing SIGGRAPH 86, Aug. 1986
  5. Whitted J. T, 'An Improved Illumination Model for Shaded Display,' Comm. ACM, Vol. 23, No. 6, pp. 342-349, June 1980 https://doi.org/10.1145/358876.358882
  6. Alan Watt, 3D Computer Graphics, AddisonWesley, 2000
  7. Glassner, A. S., 'Space Subdivision for Fast Ray Tracing,' IEEE Computer Graphics and Applications, Vol. 4, No. 10, pp. 15-22, Oct. 1984 https://doi.org/10.1109/MCG.1984.6429331
  8. Phong B, 'Illumination for Computer-Generated Pictures,' Comm. ACM, Vol. I8, No.6, pp. 311-317, June 1975 https://doi.org/10.1145/360825.360839
  9. Ashikhmin. M. and Shirley. P. 'An Anisotropic Phong BRDF Model,' Journal of Graphics Tools, Vol. 5, No.2, pp. 25-32, Aug. 2000 https://doi.org/10.1080/10867651.2000.10487522
  10. Moller T. and Trumbore B., 'Fast, minimun storage ray-triangle intersection,' Journal of Graphics Tools, Vol. 2, No.1, pp. 21-28, 1997 https://doi.org/10.1080/10867651.1997.10487468
  11. Roy S. Berns, Principles of Color Technology, Wiley Interscience
  12. Roy S. Berns, 'Methods for characterizing CRT displays,' Displays, Vol. 16, No.4, pp. 173-182, 1996 https://doi.org/10.1016/0141-9382(96)01011-6
  13. Post, D.L and Calhoun, C.S, 'An evaluation of methods for producing desired colors on CRT monitors,' Color Research and Application, vol. 14, pp. 172-186, 1989 https://doi.org/10.1002/col.5080140406
  14. Peter Shirley and Changyaw Wang, 'Direct Lighting Calculation by Monte Carlo Integration,' Proceedings of the 2nd Eurographics Rendering Workshop, June 1991