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A Study on the Convergency Property of
the Auxiliary Problem Principle

Balho H. Kim*

Abstract - This paper presents the convergency property of the Auxiliary Problem Principle when it
is applied to large-scale Optimal Power Flow problems with Distributed or Parallel computation
features. The key features and factors affecting the convergence ratio and solution stability of APP are

also analyzed.
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1. Introduction

There have been many mathematical decomposition
coordination methods amenable to solving large-scale
problems with separable structure. One of them is the so-
called Auxiliary Problem Principle (APP), which was first
introduced and has been extended by Cohen et al. [1, 2, 3]
as a practical decomposition coordination method appli-
cable for large-scale non-smooth, non-convex engineering
problems like optimal power flow, chemical processing
and transportation problems. Though its mathematical
advantage and engineering applicability have been highly
recognized through historical researches and expansive
applications, the convergency property of the APP still
remains as a subject deserving academic interests and
challenge. In this paper, we present an approach on the
convergency property of the APP and its variants for
engineering applications.

Consider a typical convex program with separable
structure of the form:

®)  min{f,(x)+ f,(z): dx = z}. 1
Then the augmented Lagrangian for problem (P) is defined as

)

€ (x,z,A)=f,(x)+ fb(z)+/1+(Ax—z)+%“Ax—z

where A denotes a Lagrange multiplier and vy is a constant.
Augmented Lagrangians have several advantages
compared to standard Lagrangians. However, the principal
disadvantage for decomposition methods is the presence of

the term 7 x - 2| in the £, which destroys the
2
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separability between x and z, since they are linked by

the cross product term z"Ax . This has long been
recognized as one of the major drawbacks of the augmented
Lagrangian approach, and a number of strategies have been
proposed to remove this difficulty [4-7].

In 1958, Uzawa [8] suggested to simply minimize the
Lagrangian function £ with respectto x and z (with A
fixed), then update the multiplier A. In the method, both
f, and f, arc assumed to be strongly convex (see

definition 3), and this restricts its potential applications in
many interesting problems.

Gabay and Mercier [9], Tseng [7], Eckstein et al. [10,
11] proposed the alternating direction method. The basic
idea underlying this approach is to sequentially perform the
minimization with respect to x with z, A fixed, then
with respect to z, followed by an update of the multiplier
A. This approach removes the difficulty of the joint
minimization in x and z , and thus preserves
separability. This approach can be viewed as a variant of
sequential decomposition techniques.

In [1, 2, 3], Cohen et al. developed a unified framework
via APP which allows them to put both two-level
algorithms {12, 13] and conventional optimization
algorithms, e.g. gradient, Newton-Raphson, in the same
context. Cohen et al. demonstrated the power and
versatility of APP in the analysis and development of new
decomposition algorithms. We first provide a short
summary of relevant mathematical tools in the following
section, followed by the key features of APP and its
convergency property.

2. Preliminaries

This section summarizes some basic mathematical
definitions and results that will be used in this study. All
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these can be found in one of [14, 15]. For notational
consistency, all the notations follow [15]. In addition, all
the functions introduced in this section are assumed to be
from a convex set C into [-c0, +o0].

Definition 1 The effective domain of a convex function
f:C— R U {0, +oo} is the set

domf = {a f (x) < +oo}.
A convex function f is said to be proper if domf is

nonempty and

f(x)>~0, Vxedomf.

Definition 2 A real-valued function f:C-—R issaidto
be lower semi-continuous at a point x €S C R" if
f(x)=1lim inf f(y).
yoox
where inf f(y)denotes the infimum of the function f
over §.(See[15], Section7.)

Throughout the paper, f is assumed to be a convex,
proper, and lower semi-continuous function.

_H C R" denotes a space and H’ a closed convex
subset of H . All other notations follow the conventional
notations as in [15] or are otherwise specified.

Proposition 1 Let f be a continuously differentiable
function on'a convex set C with gradient V. Then f is

convex if and only if

JE=fM2V/ () (x-y),Vx,yeC.
Definition 3 If f is strongly convex, then

. b
S@=F 2V ) =)+ |-y
for some b >0. (See [15], Section 25.)

Definition 4 A vector y* is said to be a subgradient of
aconvex function f atapoint p if

f@= f()+y " (x—y), Vxedomf.
The set of all subgradients of f at y is called the
subdifferential of f at yand is denoted by of(y).
Similarly, for a concave function g, the subdifferential of

g is the set
og() =1 |-»" ed(-g(»)}.

Proposition 2 If the subgradient of a function f at a
point y is unique, then f is differentiable at y and
the subgradient equals the gradient of f* at y.(See [15],

Section 25.)

Definition 5 An operator : R" — R" is said to be
nonexpansive if and only if

o) -0 <|x-3| Vx,yeR"
and strongly nonexpansive if and-only if there exists
® >0 suchthat Vx,yeR"

[0 -0 <[x -y -6z - 0)x) - -0V

where I denotes the identity mapping.

Definition 6 The graph of an operator 7 :R" —2%" is
the subset of R”xR”"
G(T) = {(x,u);u e T(x)}.

Definition 7 The operator 7 is monotone if

(u—v) (x—y)20,Vx,y,u,ve R" such that ueT(x),
veT(y). If the graph of T is not properly included in

the graph of a distinct monotone operator, then 7T is
called maximal monotone.

Propesition 3 If 7 =0f is the subdifferential of a

proper lower semi-continuous convex function f, then

T is maximal monotone. (See [15], Section 31.)

Definition 8 The inverse of an operator is the operator
defined by

yeT(x) < xeT™'(y).

Definition 9 Let 7' be an operator, and £ ) 0. The
resolvent P, associated with 7' is defined by

_ L
P,=(I+—T)" .
ﬁ(+ﬂ)

Proposition 4 (a) The operator P, is a single-valued

function. (b) 7" is maximal monotone if and only if P/x

is strongly nonexpansive with  =1. Thatis Vx,yeR",
2 2 2 M

1B =B <be= | -P)x) - - )| - Moreover

the set of fixed points of P, is equal to the set T (0) [16].

3. Analysis of Renewable Portfolio Standards
3.1 General concept of Auxiliary Problem Principle

This section presents the Auxiliary Problem Principle
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(APP). We first introduce the basic idea of APP, then
describe how the APP can be incorporated into the
augmented Lagrangian in deriving algorithms that are
suitable for parallel implementations.

Consider an optimization problem of the following form

mli}}{ f(u):6(u) =0} 3)
where f is a convex, proper, lower semi-continuous

function, with f and ®(x) additive. Then solving the

problem (3) is equivalent to solving the following sequence
of auxiliary problems [1, 2]:

Algorithm - APP [2]
utt = argmir}{ﬂK(u) + fu)— BVKu*) u
ueH

+(A+00H) 0w, (@)

ﬂ.kﬂ =/Ik +a®(uk+l) , (5)
where K is a differentiable function.

In case that
u

u=( ‘j s u,cH, ; H=H, x..xH,

; H,=H/ x..xHj},

N °

f(u):Zfi(ui) ; ®(u)zz®i(ui) >

so that both f and © are additive with respect to a
decomposition of H , then taking the auxiliary functional

K@) = ’ul2 /2 yields the following subproblems, for
i=L.,N,

g}}}{f, (u,)+ §”ui - u{‘“z +(A)'0,®u,)
* 7(%4@1‘(“/; N ®i(ui)} ©

For instance, setting

N=2 5 u:(uljz(_xj 5 f=fa+fb
u, z
; Ow)=Ax~z

identifies the problem (1). The last term in Equation (6) is

the linearization of the augmented term %”@(u)”z. The

APP can be interpreted as solving a sequence of problems
involving the linearization of the augmented Lagrangian

L, (u,2) = f(u)+ 2" Ou) +§”®(u)”2 .

3.2 Convergence Property of Algorithm-APP

Define
1
g" =argmax :(g,y") - ZH/V ~q[ Q)
qk+1 _ argrqrgt{{( . <q,yk+1> _%Hﬂm _ qHZ )

where H" is the dual of a Hilbert space H as noted in
Section 2. Then one obtains

g* =max{0, 2" +,0(y")} ©)
g = max{0, 2 + 90y} (10)

and from (5)
P A A %(qk“ —AF) (1

where ©(y) denotes the estimation of the coupling
constraint at y . Back to the original problem (4), a unique

solution y**' to (4) is characterized by the following

variational inequality,
vy e HY, ,
+ ' * + 1 * +
(K™ -k M.y -y*) +E(J(y )= J ()
+%</1",®(y*) ~0(»*"))20 (12)
Then by (9),

<ﬂ—qk,®(yk)+l(ﬂk —qk)> <0VieH" (13)
4

and, furthermore, rewriting (12) for iteration (k+1), we
obtain

</’»—qr’”',®(yk“)+-1-(,1k+l —q*+1)>s 0,vieC'-
4

(14)
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In particular, for A=A we obtain

</1 *—gH o) +l(ﬂf“ —g*! )> <0ViecH .
¥
(15)

Using (11), one gets

”/1K+1 7 2 :“/IK - 2 +Z_j”q1<+1 _’?'kuz
F2L X gt = 2. (16)

v

Next, add (2a )*(13) to (15) to get

*

2 S”/lK ) 2+a(a_227)”q1<+1_/1kH2

”/11(4»1 _ /1*

+2a<®(yk+1)’qk+l _lk>. (17)
Since

(a".00M)<(1,001). (18)

one obtains the following inequality by adding (17) to (18)
and rearranging terms

2 S“)“K P +0!(a’—227)nq1<+1 _ﬂ/k”z

5:«”/11{“ -—ﬂ,*
+2a<®(yk+l),qk+l "lk>
+2{O(") -0y )" = 4), (19)
where, in (19), we made use of

LG ALY )<Ly, A),VyeH/ ,VieH'
: ‘l;:'i. (20)

with setting A =q". Then the variational inequality

given in (12) can be rewritten as

K(yk+])_K(yk)+<K|(yk+1),y* _yk+l>_<K|(yk)’y* _yk>
1 * k+1 by ki_ k|2
+gb0n=s0 2]

+—lﬂ—</1k,®(y*)—®(yk+')> >0, (1)
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where we made use of the strong convexity of K(y) with

constant b .
Let us define a function w(y,A4):

2

V(D =K0) KO~ (K.Y ~y)r 57

(22)

where 7 >0. Then again by the strong convexity of
K(y),

v(»,4)20.
For convenience, define
¢ =y (", A%
and

¢k+l - l//(ykﬂ,ﬂ,kﬂ)

Then

¢k+1 _¢k :_K(yk+1)+K(yk)__<K|(yk+l)’y* _yk+1>
+{K' (") =)

+ 2%7 {W” RPN PN } (23)

From RHS of (20) with y = y**' | we get

T+ (2,007 < I +(£,004")

or,

—;—[J(y*)—J(y“‘)]s%(4*,®<y“‘>—®(y*)> -

Next add (L)*(19) to (21) to get
2ap

1
B

-2 k1 k|?
W& g

5 gt S_é”ykﬂ _ykul N

> <qk+l _qk’G)(yk+l)>

24

We define another function y(y, A)as:
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_ _r 2
r» D)=y (nA) -5 5 le()| (25)

Then from the assumption on the equality constraint y
and (13) with
qk+l — A, we finally get the following relationship,

being Lipschitz with constant ¢

UM A -y 2 € ﬁwz Y R

‘2 . (26)

v =270

Thus with the following assumptions

(a) i(yrz ~bf)<0 and

(®) (@-2y)<0,

one can verify that the function y(y,A1) is non-increasing.

Next, combining the following
oG = |0 -G < oy -

with the assumption that the functional K be strongly
convex with the constant b , obtains

2

oz Oy

R VR
2

That is the function y(y,A) bounded below.

Consequently,
i 50
and
loo | =[ys -3 -0 -

This proves the convergency of APP. (Ref. Fig.
1.) Finally, with the identification of b=1, and 7=1,
we obtain the following convergence condition,

a
>y > —
ﬂ72

. )

Q&asing
} RSP EF ICRPLD

K’ ,\X) A’+1,1\h’) Yy

(y (y

Fig. 1. Convergency Property of APP
3.3 Choice of Parameters

In Algorithm-APP, as also commented in [2], our
experience shows that the choice of o = y seems the best

among other possible combinations. However, in
choosing the parameter [, one must consider the

relationship with & and y. The convergence conditions

given in the previous section can be rewritten as

@ L-1<o0,
B

-2
(b) =2y ,
2p
and to enhance the convergence ratio, one might choose
«, 3,y so that the negative values of LHS of (a) and (b)

bl

are as large as possible. Our experience shows that the
value of LHS of (a) dominates the convergence.
In our study, we mostly adopt the following relationship,

0!=}/=3,

where the average of 2nd order coefficient over all the core
generators in the two adjacent regions is taken as the value
of f. Our studies found that the choice of parameters

depends on the problems. The applications and further
studies on the choice of parameters can be found in [19, 20,
21].

4. Conclusion

This paper presents the convergency property of the
Auxiliary Problem Principle (APP) which has already been
applied to various engineering optimization problems with
separable structure such as Distributed Optimal Power
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Flow and Parallel Economic Dispatch, etc. The
significance of this study lies in the fact that the
mathematical property of the convergency has been proved
in a different way based on the existing decomposition
methodologies. The choice of parameters for improving
convergence ratio in practical application remains for
future study.
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