DOI QR코드

DOI QR Code

Photonic K-Band Microwave Bandpass Filter with Electrically Controllable Transfer Characteristics Based on a Polymeric Ring Resonator

전기적으로 가변되는 전달특성을 갖는 폴리머 링 광공진기를 이용한 마이크로웨이브 대역통과 필터

  • Kim, Gun-Duk (Department of Electronic Engineering, Kwangwoon University) ;
  • Lee, Sang-Shin (Department of Electronic Engineering, Kwangwoon University)
  • Published : 2006.10.25

Abstract

An integrated photonic K-band microwave bandpass filter has been proposed and demonstrated by incorporating a polymeric ring resonator. Its transfer characteristics were adjusted by shilling the resonance wavelength of the ring resonator via the thermooptic effect. The achieved performance of the filter includes the center frequency of 20 GHz, the attenuation of ${\sim}15dB$, the bandwidth of 2 GHz, and the corresponding quality factor of 10. The microwave output power within the passband of the device was adjusted at the rate of about 6.7 dB/mW in the range of 27 dB. This kind of device with electrically controllable transfer characteristics can be applied to implement microwave switches and other devices.

본 논문에서는 폴리머 링 광공진기를 이용하여 집적광학형 K-band용 마이크로웨이브 대역통과 필터를 제안하고 구현하였다. 특히, 열광학 효과를 이용하여 광공진기의 공진파장을 변화시킴으로써 대역통과 필터의 전달특성을 전기적으로 조절하였다. 측정된 필터의 중심주파수는 20 GHz, 소멸비는 약 15 dB, 3 dB 대역폭은 2 GHz, 그리고 Q값은 10이었다. 마이크로웨이브 필터에서 중심주파수의 출력특성을 27 dB범위 내에서 ${\sim}6.7dB/mW$로 조절할 수 있었다. 전기적으로 조절되는 전달특성을 갖는 이 필터는 마이크로웨이브스위치 등으로 응용할 수 있을 것으로 기대된다.

Keywords

References

  1. A. Seeds, 'Microwave photonics,' IEEE Trans. Microwave Theory Tech., vol. 50, pp. 877-887, 2002 https://doi.org/10.1109/22.989971
  2. J. Capmany, D. Pastor, B. Ortega, J. Mora, and M. Andres, 'Photonic processing of microwave signals,' IEEE Proc. Optoelectron., vol. 152, pp. 299-320, 2005 https://doi.org/10.1049/ip-opt:20050018
  3. J. Capmany, B. Ortega, and D. Pastor, 'A tutorial on microwave photonic filters,' J. Lightwave Technol., vol. 24, no. 1, pp. 201-229, 2006 https://doi.org/10.1109/JLT.2005.860478
  4. M. Y. Frankel and R. D. Esman, 'Fiber-optic tunable microwave transversal filter,' IEEE Photon. Technol. Lett., vol. 7, no. 2, pp. 191-193, 1995 https://doi.org/10.1109/68.345919
  5. B. Vidal, V. Polo, J. L. Corral, and J. Marti, 'Efficient architecture for WDM photonic microwave filters,' IEEE Photon. Technol. Lett., vol. 16, no. 12, pp. 257-259, 2004 https://doi.org/10.1109/LPT.2003.820116
  6. D. B. Hunter and R. A. Minasian, 'Tunable microwave fiber-optic bandpass filters,' IEEE Photon. Technol. Lett., vol. 11, no. 7, pp. 874-876, 1999 https://doi.org/10.1109/68.769737
  7. D. B. Hunter and R. A. Minasian, 'Microwave optical filters using in-fiber Bragg grating arrays,' IEEE Microwave Guided Wave Lett., vol. 6, no. 2, pp. 103-105, 1996 https://doi.org/10.1109/75.482003
  8. D. B. Hunter and R. A. Minasian, 'Photonic signal processing of microwave signals using an active-fiber Bragg-grating-pair structure,' IEEE Trans. Microwave Theory Tech., vol. 45, no. 8, pp. 1463-1466, 1997 https://doi.org/10.1109/22.618455
  9. F. Zeng and J. Yao, 'All-optical microwave mixing and bandpass filtering in a radio-over-fiber link,' IEEE Photon. Technol. Lett., vol. 17, no. 4, pp. 899-901, 2005 https://doi.org/10.1109/LPT.2005.843960
  10. W. J. Chin, D. H. Kim, J. H.Song, and S. S. Lee, 'Integrated photonic microwave bandpass filter incorporating a polymeric microring resonator,' Jpn. J. Appl. Phys., vol. 45, no. 4A, pp. 2576-2579, 2006 https://doi.org/10.1143/JJAP.45.2576
  11. K. Chang and L. H. Hsieh, 'Microwave ring circuits and related structures,' Wiley, Ch.5, 2004
  12. A. Yariv, 'Universal relations for coupling of optical power between microresonators and dielectric waveguides,' Electron. Lett., vol. 36, no. 4, pp. 321-322, 2000 https://doi.org/10.1049/el:20000340
  13. D. H. Kim, J. G. Im, S. S. Lee, S. W. Ahn, and K. D. Lee, 'Polymeric microring resonator using nanoimprint technique based on a stamp incorporating a smoothing buffer layer,' IEEE Photon. Technol. Lett, vol. 17, no. 11, pp. 2352-2354, 2005 https://doi.org/10.1109/LPT.2005.857606