Characterization of Residual Stress in Shot Peened Al 7075 Alloy Using Surface Acoustic Wave

표면파를 이용한 쇼트피닝된 Al 7075 합금의 잔류응력 평가

  • 김정석 (고려대학교 신소재공학과) ;
  • 김용권 (서울산업대학교 기계공학과) ;
  • 박익근 (서울산업대학교 기계공학과) ;
  • 권숙인 (고려대학교 신소재공학과)
  • Published : 2006.10.30

Abstract

The residual stress in shot-peened Al 7075 alloy was evaluated using surface acoustic wave (SAW). Shot peening was conducted to produce a variation in the residual stress with the depth below the surface under a shot velocity of 30 m/s. The SAW velocity was measured from the V(z) curve using a scanning acoustic microscopy (SAM). The Vickers hardness profile from the surface showed a significant work hardening near the surface layer with a thickness of about 0.25 mm. As the residual stress became more compressive, the SAW velocity increased, whereas as the residual stress became more tensile, the SAW velocity decreased. The variation in the SAW velocity through the shot peened surface layer was in good agreement with the distribution of the residual stress measured by X-ray diffraction technique.

표면파를 이용하여 쇼트피닝된 Al 7075 합금의 잔류응력 분포를 평가하고자 하였다. 재료 내 표면층에 대한 잔류응력분포를 달리하기 위해서 피닝볼의 속도를 30m/s로 하여 쇼트피닝을 수행하였다. 표면파의 속도는 초음파현미경을 이용하여 V(z)곡선법으로 측정하였다. 쇼트피닝 후 비커스경도를 측정한 결과 쇼트피닝에 의한 소성변형으로 0.25mm 깊이까지 가공경화가 나타났다. 압축잔류응력이 증가하면서 표면파의 속도는 증가를 하였고 인장잔류응력이 작용할수록 표면파의 속도가 감소하였다. 표면파의 속도 변화는 X선 회절에 의해 측정한 잔류응력 변화와 밀접한 연관성을 나타내었다.

Keywords

References

  1. M. R. Viotti, et aI., 'Portable digital speckle pattern interferometry device to measure residual stresses using the hole drilling technique,' Optics and Lasers in Engineering, Vol. 44, pp. 1052-1066, (2006) https://doi.org/10.1016/j.optlaseng.2005.09.004
  2. D. M. Stewart, et at, 'Magnetic Barkhausen noise analysis of stress in steel,' Current Applied Physics, Vol. 4, pp. 308-311, (2004) https://doi.org/10.1016/j.cap.2003.11.035
  3. M. Ya, et aI., 'Residual stress in laser welded Aluminium plate by use of ultrasonic and optical methods,' Materials Science and Engineering A382, pp. 257-264, (2004)
  4. I. C. Noyan and J. B. Cohen, 'An X-Ray diffraction study of the residual stress-strain distributions in shot peened two-phase Brass,' Materials Science and Engineering, Vol. 75, pp. 179-193, (1985) https://doi.org/10.1016/0025-5416(85)90188-0
  5. C. H. Ma, et aI., 'Residual stress measurement in textured thin Film by grazing-incidence X-Ray diffraction,' Thin Solid Films, Vol. 418, pp. 73-78, (2002) https://doi.org/10.1016/S0040-6090(02)00680-6
  6. Z. M. Yang, et aI., 'Characteristics of residual stress in Mo/Ti functionally graded material with a continuous change of composition,' Materials Science and Engineering A358, pp. 214-218, (2003)
  7. M. O. Si-Chaib, et aI., 'An ultrasound method for the acoustoelastic evaluation of simple bending stresses,' NDT & E International, Vol. 34, No.8, pp. 521-529, (2001) https://doi.org/10.1016/S0963-8695(01)00012-3
  8. D. E. Bray and W. Tang, 'Subsurface stress evaluation in steel plates and bars using the LCR ultrasonic wave,' Nuclear Engineering and Design, Vol. 207, pp. 231-240, (2001) https://doi.org/10.1016/S0029-5493(01)00334-X
  9. 조동수, 박익근, 김용권, '초음파현미경에서 V(z)곡선을 이용한 세라믹/금속 접합계면의 비파괴평가', 비파괴검사학회 춘계학술대회 논문집, pp. 332-339, (2004)
  10. D. Rats, et al., 'High frequency scanning acoustic microscopy: a novel nondestructive surface analytical tool for assessment of coating-specific elastic moduli and tomographic study of subsurface defects,' Thin Solid Films, Vol. 355-356, pp. 347-352, (1999)
  11. R. J. M. Frnseca, et aI., 'Scanning acoustic microscopy-recent applications in materials science,' Advanced Materials, Vol. 5, pp. 508-519, (1993) https://doi.org/10.1002/adma.19930050703
  12. D. E. Bray and R. K. Stanley, 'Nondestructive evaluation: a tool in design, manufacturing and service,' pp. 143-172, McGraw-Hill, New York, (1989)
  13. M. Okade and K. Kawashim, 'Local stress measurement on polycrystalline Aluminum by an acoustic microscope,' Ultrasonics, Vol. 36, pp. 933-939, (1998) https://doi.org/10.1016/S0041-624X(98)00020-1
  14. Y. C. Lee, J. O. Kim and J. D. Achenbach, 'Measurement of stresses by line-focus acoustic microscopy,' Ultrasonics, Vol. 32, No.5, pp. 359-365, (1994) https://doi.org/10.1016/0041-624X(94)90105-8