Instrumented Indentation Technique: New Nondestructive Measurement Technique for Flow Stress-Strain and Residual Stress of Metallic Materials

계장화 압입시험: 금속재료의 유동 응력-변형률과 잔류응력 평가를 위한 신 비파괴 측정 기술

  • Lee, Kyung-Woo (School of Materials & Science and Engineering, Seoul National University) ;
  • Choi, Min-Jae (School of Materials & Science and Engineering, Seoul National University) ;
  • Kim, Ju-Young (School of Materials & Science and Engineering, Seoul National University) ;
  • Kim, Kwang-Ho ;
  • Kwon, Dong-Il (School of Materials & Science and Engineering, Seoul National University)
  • Published : 2006.10.30

Abstract

Instrumented indentation technique is a new way to evaluate nondestructive such mechanical properties as flow properties, residual stress and fracture toughness by analyzing indentation load-depth curves. This study evaluated quantitatively the flow properties of steels and residual stress of weldments. First, flow properties can be evaluated by defining a representative stress and strain from analysis of deformation behavior beneath the rigid spherical indenter and the parameters obtained from instrumented indentation tests. For estimating residual stress, the deviatoric-stress part of the residual stress affects the indentation load-depth curve, so that by analyzing the difference between the residual-stress-induced indentation curve and residual-stress-free curve, the quantitative residual stress of the target region can be evaluated. The algorithm for flow property evaluation was verified by comparison with uniaxial tensile test and the residual stress evaluation model was compared to mechanical cutting and ED-XRD results.

가동 중인 설비 및 대형 구조물은 장시간 사용, 고온 환경 및 반복되는 하중 등의 영향으로 설비재료의 교체 및 유지 보수가 요구된다. 이때 설비의 기계적 특성을 평가하는 것은 필수 불가결한 요소 이지만 대부분의 물성평가방법이 파괴적이기 때문에 가동 중인 설비에 직접 적용하는 것은 상당한 어려움이 따른다. 그러나 계장화 압입시험법은 다양한 기계적인 특성을 비파괴적으로 측정하는 최신기술로서 재료에 하중 인가 및 제거 과정 중 하중과 변위를 연속적으로 측정하여 획득된 압입하중-변위곡선의 분석을 통해 유동물성, 잔류응력, 파괴인성 등의 기계적 특성을 평가 할 수 있다. 본 연구에서는 계장화 압입시험을 이용하여 철강재료 및 용접부 유동물성과 잔류응력을 정량적으로 평가하였다. 계장화 압입시험 시 발생하는 압입자 하부의 응력 상태를 고려하여 유동응력과 변형률을 정의하고, 이를 최적화된 응력-변형률 구성방정식을 통해 유동곡선 및 항복강도, 인장강도 등의 유동물성을 평가 하였다. 계장화 압입시험을 이용하여 잔류응력을 측정하기 위해 소성변형과 직접 관련된 편차 응력 성분만으로 압입변형과 잔류응력 간의 상호작용을 분석하여 잔류응력 모델을 정의하였다. 측정된 유동물성은 일축인장시험의 결과를 통해 그 정확성을 검증하였고, 잔류응력은 홀-드릴링, 절단법 및 ED-XRD 시험과 비교하여 그 모델을 검증하였다.

Keywords

References

  1. C. O. Ruud, et aI., 'Comparison of three residual-stress measurement methods on a mild steel,' Experimental mechanics, Vol. 25, pp. 338-343, (1985) https://doi.org/10.1007/BF02321331
  2. J. W. Joo and C. K. Park, 'Determination of non-uniform residual stress by the hole drilling method,' Transaction of KSME, A, Vol. 22, pp. 268 - 277, (1998)
  3. J.-H. Ahn and D. Kwon, 'Derivation of plastic stress-strain relationship from ball indentation: examination of strain definition and pileup effect,' Journal of Materials Research, Vol. 16, pp. 3170-3178, (2001) https://doi.org/10.1557/JMR.2001.0437
  4. Haggag, F. M., 'In-Situ measurements of mechanical properties using novel automated ball indentation system,' ASTM STP 1204, American Society for Testing and Materials, Philadelphia, pp. 27-44, (1993)
  5. Jung-Suk Lee and Dongil Kwon, et al., 'An instrumented indentation technique for estimating fracture toughness of ductile materials: a critical indentation energy model based on continuum damage mechanics,' Acta Materialia Vol. 54, pp. 1101-1109, (2006) https://doi.org/10.1016/j.actamat.2005.10.033
  6. Y.-H. Lee and D. Kwon, 'Residual stresses in DLC/Si and Au/Si systems: application of a stress-relaxation model to the nanoindentation technique,' Journal of Materials Research, Vol. 17, pp. 901-906, (2002) https://doi.org/10.1557/JMR.2002.0131
  7. Suresh, S. and Giannakopoulos, A. E., 'A new method for estimating residual stresses by instrumented sharp indentation,' Acta Materialia, Vol. 46, pp. 5755-5767, (1998) https://doi.org/10.1016/S1359-6454(98)00226-2
  8. H. A. Francis, 'Phenomenological analysis of plastic spherical indentation,' Transaction of the ASME (Series H), Vol. 9, pp. 272-281, (1976)
  9. D. Tabor, 'Hardness of metals,' 2nd, Clarendon Press, Oxford, (1951)
  10. Tsui, T. Y, et al., 'Influences of stress on the measurement of mechanical properties using nanoindentation: part I. experimental studies in an Aluminum alloy,' Journal of Materials Research, Vol. 11, pp. 752-759, (1996) https://doi.org/10.1557/JMR.1996.0091
  11. R. Hill, 'The Mathematical Theory of Plasticity,' Clarenden, Oxford, (1956)
  12. K. L. Johnson, 'Contact Mechanics,' Cambridge Univ. Press, Cambridge, UK, pp. 84-106 (1985)
  13. Y-H Lee, et al., '응력 상호작용과 연속압입 기법을 이용한 SS400 강봉의 굽힘 잔류응력평가,' 대한금속재료학회지, 40권 10호, pp. 1042-1047, (2002)
  14. Oliver, W. C. and Pharr, G. M., 'An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments,' Journal of Materials Research, Vol. 7, pp. 1564-1583, (1992) https://doi.org/10.1557/JMR.1992.1564
  15. J. Y. Kim, 'Determination of tensile properties by instrumented indentation technique: representative stress and strain approach,' Surface and Coating Technology, A(2006)
  16. 국정한, 김덕중, 연윤모, '용접재료학,' pp. 66, (2000)