DOI QR코드

DOI QR Code

Carbon Assimilation and Respiration of Daphnia magna with Varying Algal Food Quality

  • Park, Sang-Kyu (Department of Biological Science, Ajou University) ;
  • Goldman Charles R. (Department of Environmental Science and Policy, University of California)
  • Published : 2006.10.31

Abstract

To elucidate the mechanisms by which algal food quality affect Daphnia growths, we measured carbon incorporation rates and respiration rates of Daphnia magna with Cryptomonad Rhodomonas minuta, green algae Scenedesmus acutus and cyanobacteria Synechococcus sp. with varying physiological states as food. Carbon assimilation rates were high with R. minuta and S. acutus and low with Synechococcus sp. showing a similar pattern to the growth rate pattern. There was no clear difference among respiration rates of three algal species. Carbon assimilation rates and respiration rates of D. magna appeared to be independent on Molar C:P ratios in algal foods. Carbon growth efficiencies (incorporated carbon per assimilated carbon amount) were lower when D. magna fed with Synechococcus sp. than fed with R. minuta or S. acutus. Analysis of variance results show that carbon assimilation rates which were sum of incorporation and respiration rates and carbon growth efficiencies were only dependant on species affiliation. Overall, our results showed that algal species with varying ${\omega}3$ polyunsaturated fatty acid content led different carbon incorporation rates and overall carbon assimilation rates of D. magna.

Keywords

References

  1. Ahlgren G, Lundstedt L, Brett MT, Forsberg C. 1990. Lipid composition and food quality of some freshwater phytoplankton for cladoceran zooplankters. J Plankton Res 12: 809-818 https://doi.org/10.1093/plankt/12.4.809
  2. Brett MT. 1993. Comment on 'Possibility of N or P limitation for planktonic cladocerans: an experimental test' (Urabe and Watanabe) and 'Nutrient element limitation of zooplankton production' (Hessen). Limnol Oceanogr 38: 1333-1337 https://doi.org/10.4319/lo.1993.38.6.1333
  3. Brett MT, Müller-Navarra DC. 1997. The role of highly unsaturated fatty acids in aquatic food-web processes. Freshwat Biol 38: 483-499 https://doi.org/10.1046/j.1365-2427.1997.00220.x
  4. Checkley DM Jr. 1985. Nitrogen limitation of zooplankton production and its effect on the marine nitrogen cycle. Arch Hydrobiol Beih Ergebn Limnol 21: 103-113
  5. DeMott WR. 1988. Discrimination between algae and artificial particles by freshwater and marine copepods. Limnol Oceanogr 33: 397-408 https://doi.org/10.4319/lo.1988.33.3.0397
  6. DeMott WR. 1998. Utilization of a cyanobacterium and a phosphorusdeficient green alga as complementary resources by daphnids. Ecology 79: 2463-2481 https://doi.org/10.1890/0012-9658(1998)079[2463:UOACAA]2.0.CO;2
  7. DeMott WR, Gulati RD, Siewertsen K. 1998. Effects of phosphorus- deficient diets on the carbon and phosphorus balance of Daphnia magna. Limnol Oceanogr 43: 1147-1161 https://doi.org/10.4319/lo.1998.43.6.1147
  8. Gulati RD, DeMott WR. 1997. The role of food quality for zooplankton: remarks on the state-of-the-art, perspectives and priorities. Freshwat Biol 38: 753-768 https://doi.org/10.1046/j.1365-2427.1997.00275.x
  9. Hessen DO. 1992. Nutrient element limitation of zooplankton production. Am Nat 140: 799-814 https://doi.org/10.1086/285441
  10. Hessen DO. 1993. The role of mineral nutrients for zooplankton nutrition: reply to the comment by Brett. Limnol Oceanogr 38: 1340-1343 https://doi.org/10.4319/lo.1993.38.6.1340
  11. Kattner G, Fricke HSG. 1986. Simple gas-liquid chromatographic method for the simultaneous determination of fatty acids and alcohols in wax esters of marine organisms. J Chromatogr 361: 263-268 https://doi.org/10.1016/S0021-9673(01)86914-4
  12. Kilham SS, Kreeger DA, Goulden CE, Lynn SG. 1997. Effects of algal food quality on fecundity and population growth rates of Daphnia. Freshwat Biol 38: 639-647 https://doi.org/10.1046/j.1365-2427.1997.00232.x
  13. Lampert W. 1977. Studies on the carbon balance of Daphnia pulex DeGeer as related to environmental conditions. II. The dependence of carbon assimilation on animal size, temperature, food concentration and diet species. Arch Hydrobiol Suppl 48: 310-335
  14. Lampert W. 1987. Feeding and nutrition in Daphnia. In: Daphnia (Peters, RH, De Bernardi R, eds). Istituto Italiano di Idrobiologia, Verbania, Pallanza. pp 143-192
  15. Lampert W, Schmitt R-D, Muck P. 1988. Vertical migration of freshwater zooplankton: test of some hypotheses predicting a metabolic advantage. B Mar Sci 43: 620-640
  16. Lindström K. 1983. Selenium as a growth factor for plankton algae in laboratory experiments and in some Swedish lakes. Hydrobiologia 101: 35-48 https://doi.org/10.1007/BF00008655
  17. Muller-Navarra DC. 1995a. Biochemical versus mineral limitation in Daphnia. Limnol Oceanogr 40: 1209-1214 https://doi.org/10.4319/lo.1995.40.7.1209
  18. Muller-Navarra DC. 1995b. Evidence that a highly unsaturated fatty acid limits Daphnia growth in nature. Arch Hydrobiol 132: 297-307
  19. Muller-Navarra DC, Brett MT, Liston AM, Goldman CR. 2000. A highly unsaturated fatty acid predicts carbon transfer between primary producers and consumers. Nature 403: 74-77 https://doi.org/10.1038/47469
  20. Muller-Navarra DC, Brett MT, Park S, Chandra S, Ballantyne AP, Zorita E, Goldman CR. 2004. Seston unsaturated fatty acid content and tropho-dynamic coupling in lakes. Nature 427:69-72 https://doi.org/10.1038/nature02210
  21. Park S, Brett MT, Muller-Navarra DC, Goldman CR. 2002. Essential fatty acid content and the phosphorus to carbon ratio in cultured algae as indicators of food quality for Daphnia. Freshwat Biol 47: 1377-1390 https://doi.org/10.1046/j.1365-2427.2002.00870.x
  22. Peters RH. 1987. Metabolism in Daphnia. In: Daphnia (Peters, RH, De Bernardi R, eds). Istituto Italiano di Idrobiologia, Verbania, Pallanza. pp 193-243
  23. Richman S, Dodson SI. 1983. The effect of food quality on feeding and respiration by Daphnia and Diaptomus. Limnol Oceanogr 28: 948-956 https://doi.org/10.4319/lo.1983.28.5.0948
  24. Solorzano L, Sharp JH. 1980. Determination of total phosphorus and particulate phosphorus in natural waters. Limnol Oceanogr 25: 56-760
  25. Sterner RW, Schulz K. 1998. Zooplankton nutrition: recent progress and a reality check. Aquat Ecol 32: 261-279 https://doi.org/10.1023/A:1009949400573
  26. Strickland JDH, Parsons TR. 1972. A Practical Handbook of Seawater Analysis. Bulletin 167. Fisheries Research Board of Canada, Ottawa
  27. Urabe J, Watanabe Y. 1992. Possibility of N or P limitation for planktonic cladocerans: an experimental test. Limnol Oceanogr 37: 244-251 https://doi.org/10.4319/lo.1992.37.2.0244
  28. Urabe J, Watanabe Y. 1993. Implications of seston elemental ratio in zooplankton ecology: reply to the comment by Brett. Limnol Oceanogr 38: 1337-1340 https://doi.org/10.4319/lo.1993.38.6.1337
  29. Urabe J, Classen J, Sterner RW. 1997. Phosphorus limitation of Daphnia growth: is it real? Limnol Oceanogr 42: 1436-1443 https://doi.org/10.4319/lo.1997.42.6.1436
  30. Van Donk E, Hessen DO. 1993. Grazing resistance in nutrient-stressed phytoplankton. Oecologia 93: 508-511 https://doi.org/10.1007/BF00328958
  31. Van Donk E, Hessen DO. 1995. Reduced digestibility of UV-B stressed and nutrient-limited algae by Daphnia magna. Hydrobiologia 307: 147-151 https://doi.org/10.1007/BF00032006
  32. Van Donk E, Lurling M, Hessen DO, Lockhorst GM. 1997. Altered cell wall morphology in nutrient-deficient phytoplankton and its impact on grazers. Limnol Oceanogr 42: 357-364 https://doi.org/10.4319/lo.1997.42.2.0357

Cited by

  1. Responses of Two Invasive Plants Under Various Microclimate Conditions in the Seoul Metropolitan Region vol.49, pp.6, 2012, https://doi.org/10.1007/s00267-012-9852-3