Changes of Frozen-Thawed Semen Characteristics in Miniature Pig and Duroc

Miniature Pig와 Duroc 종간의 동결-융해 후 정액 성상 비교

  • Lee, Y.S. (College of Animal Life Science, Kangwon National University) ;
  • Choi, W.C. (College of Animal Life Science, Kangwon National University) ;
  • Lee, S.H. (Okayama University) ;
  • Cheong, H.T. (School of Veterinary Medicine, Kangwon National University) ;
  • Lee, S.Y. (Gyeongnam Province Advanced Swine Research Institute) ;
  • Yang, B.K. (College of Animal Life Science, Kangwon National University) ;
  • Park, C.K. (College of Animal Life Science, Kangwon National University)
  • 이용승 (강원대학교 동물생명과학대학) ;
  • 최원철 (강원대학교 동물생명과학대학) ;
  • 이승형 (오카야마대학) ;
  • 정희태 (강원대학교 수의학부대학) ;
  • 이상영 (경상남도 첨단양돈연구소) ;
  • 양부근 (강원대학교 동물생명과학대학) ;
  • 박춘근 (강원대학교 동물생명과학대학)
  • Published : 2006.09.30

Abstract

The purpose of this study was undertaken to compare ability of frozen-thawed sperm characteristics between two strains (miniature pig and Duroc). The semen was collected by gloved-hand method into a pre-warmed ($37^{\circ}C$) thermos bottle. The semen was diluted with same volume extender and added to LEY solution for freezing. The diluted semen was placed in 0.5 ml straws, and freezing was initiated by exposing the straws to liquid nitrogen ($LN_2$) vapours for 10 min before placing them into $LN_2$ for cryopreservation. The frozen-semen straw were thawed at 20, 37 and $50^{\circ}C$ for 1 min, 45 sec and 10 sec within water-bath. The semen sample were evaluated at 0, 3, 6, 9, and 12 h after incubation at $37^{\circ}C$ for analysis of sperm ability. Abnormality of spermatozoa in miniature pig was significantly (p<0.05) higher than that in Duroc at 0, 9 and 12 h of post-thawing incubation after frozen-thawing. The percentage of F-patterned spermatozoa in miniature pig was significantly (p<0.05) lower, while the percentage of AR (acrosome reacted spermatozoa) pattern was higher in the miniature than in the Duroc. On the other hand, there was no significant difference in the viability of spermatozoa thawed at different temperature ($20^{\circ}C\;and\;37^{\circ}C$) between two species, but the viability in miniature pig was higher (p<0.05) than in Duroc when sperm was thawed at $50^{\circ}C$. In conclusion, this study suggest that suitable freezing method for miniature pig semen is required for increasing post-thawing viability and fertilization capacity.

본 연구는 미니 돼지와 일반 돼지(Duroc)의 동결융해 후 정자의 수정 능력을 비교하여 동결 보존체계의 기틀을 확립하고자 하였다. 정액 제조는 수압법으로 정액 채취하여 1차 희석하였다. 동결은 LEY (1차: 11% ${\alpha}$-lactose+egg yolk, 2차: 1차 동결액+glycerol+OEP) 동결액을 이용하여 동결을 실시하여 동결 보존하였다. 동결 정액의 융해는 0.5 ml straw를 각각 20, 37 및 $50^{\circ}C$ water bath에서 1분, 40 초 및 10초간 융해하여 세척 과정 후 BTS 5 ml를 첨가하여 $37^{\circ}C$에서 배양하였다. 정자 성상 검사로는 기형율(Rose Bengal staining), 첨체율(Chlortetra-cycline staining) 및 생존율(SYBR-14/PI staining)등을 배양 후 0, 3, 6, 9 및 12시간에서 검토하여 다음과 같은 결과를 얻었다. 정자의 보존 시간에 따른 기형율은 동결 융해 직후 miniature pig가 $19.5{\pm}1.7%$ 로 Duroc의 $13.9{\pm}0.3%$에 비해 유의적으로 높았다. (p<0.05). 첨체 검사에서 수정능 획득이 일어나지 않은 F pattern은 동결 융해 후 miniature pig와 Duroc 종 정액이 $24.1{\pm}2.8%$$37.9{\pm}1.1%$로 Duroc 종에서 유의적(p<0.05)으로 높게 나타났으며, 동결 융해후 miniature pig와 Duroc 종의 AR pattern은 $21.1{\pm}1.6%$$15.5{\pm}2.2%$로 miniature pig가 유의적(p<0.05)으로 높게 나타났다. 융해 온도별 생존율에서는 20과 $37^{\circ}C$에서는 두 종간에서 유의적 차이는 없었으나, $50^{\circ}C$에서는 miniature pig가 $63.8{\pm}3.6%$$47.4{\pm}3.2%$인 Duroc 종에 비해 유의적(p<0.05)으로 높게 나타났다. 본 연구의 결과로부터 첨체율과 기형율에 대한 연구를 보완함으로써 miniature pig정액의 안정적인 동결 체계를 확립할 수 있을 것으로 판단된다.

Keywords

References

  1. Abeydeera LR, Funahashi H, Kim NH and Day BN. 1997. Chlortetracycline fluorescence patterns and in vitro fertilization of frozen thawed boar spermatozoa incubated under various bicarbonate concentrations. Zygote, 5: 117 -125 https://doi.org/10.1017/S0967199400003798
  2. Ahmad K. 1984. Effect of thaw rates on survival of buffalo spermatozoa frozen straws. J. Dairy. Sci., 67: 1535-1538 https://doi.org/10.3168/jds.S0022-0302(84)81473-3
  3. Almlid T and Johnson LA. 1988. Effect of glycerol concentration, equilibration time and temperature of glycerol addition on post thaw viability of boar spermatozoa frozen in straw. J. Anim. Sci., 66: 2899-2905 https://doi.org/10.2527/jas1988.66112899x
  4. Brinster RL, Chen HY, Warren R, Sarthy A and Palmiter RD. 1982. Regulation of metallothionein-thymidine kinase fusion plasmids injected into mouse eggs. Nature, 296(5852):39-42 https://doi.org/10.1038/296039a0
  5. Bwanga CO. 1991. Cryopreservation of boar semen: 1. A literature-review. Acra. Vet. Scand., 32:431-453
  6. Carb B and Einarsson S. 1971. Fertility of deep frozen boar spermatozoa. Acta. Vet. Scand., 12:125-127
  7. Crowe JH, Hoekstra FA, Crowe LM, Anchordoguy TJ and Drobnis E. 1989. Lipid phase transitions measured in intact cell with Fourier transform infrared spectroscopy. Cryobiology, 26:76-84 https://doi.org/10.1016/0011-2240(89)90035-7
  8. Drobnis EZ, Crowe LM, Berger T, Anchordoguy TJ, Overstreet JW and Crow JH. 1993. Cold shock damage is due to lipid phase-transitions in cellmembranes a demonstration using sperm as a model. J. Exp. Zool., 265:432-437 https://doi.org/10.1002/jez.1402650413
  9. Eivarsson Sand Viring V. 1973. Distribution of frozen thawed spermatozoa in the reproductive tract of gilts at different time intervals after insemination. J. Reprod. Fert., 32: 117-120 https://doi.org/10.1530/jrf.0.0320117
  10. Eriksson BM, Peters son and Rodroguez-martinez H. 2002. Field fertility with exported boar semen frozen in the new Flac Pack container. Theriogenology, 58:1065-1079 https://doi.org/10.1016/S0093-691X(02)00947-0
  11. Fiser PS and Fairfull RW. 1990. Combined effect of glycerol concentration and cooling velocity on motility and acrosomal integrity of boar spermatozoa frozen in 0.5 ml straw. Mol. Reprod. Dev., 25: 123-129 https://doi.org/10.1002/mrd.1080250204
  12. Fiser PS, Hansen C, Underhill KL and Shrestha JNB. 1991. The effect of induced ice nucleation seeding on the post-thaw motility and acrosomal integrity of boar spermatozoa. Anim. Reprod. Sci., 24:293-304 https://doi.org/10.1016/S0378-4320(05)80012-0
  13. Fiser PS, Rairfull RW and Marcus GJ. 1986. The effect of thawing velocity on survival and acrosomal integrity of ram spermatozoa frozen at optimal and suboptimal rates in straws. Cryobiology, 23:141-149 https://doi.org/10.1016/0011-2240(86)90005-2
  14. Gillan L, Evans G and Maxwell WMC. 1997. Capacitation status and fertility of fresh and frozen thawed ram spermatozoa. Reprod. Fertil. Dev., 9:481-487 https://doi.org/10.1071/R96046
  15. Grosveld F and Kollias G. 1992. Transgenic animals. London: Academic Press
  16. Hammerstedt RH and Graham JK. 1992. Cryopreservation of poultry sperm the enigma of glycerol. Cryobiology, 29:26-38 https://doi.org/10.1016/0011-2240(92)90004-L
  17. Hammerstedt RH, Graham JK and Nolan JP. 1990. Cryopreservation of mammalian sperm: what we ask them to survive. J. Androl., 11 :73-88
  18. Hofrno PO and Alm1id T. 1991. Freezing of boar semen with special emphasis on cryoprotectants. In: Johnson LA, Rath, D. (Eds.), Boar Semen Preservation II. Paul Parey, Berlin, pp. 111-122
  19. Holt WV. 2000. Basic aspects of frozen storage of semen. Anim. Reprod. Sci., 62:3-22 https://doi.org/10.1016/S0378-4320(00)00152-4
  20. Holt WV and North RD. 1984. Partially irreversible cold-induced lipid phase transitions in mammalian sperm plasma membrane domains: freeze-fracture study. J. Exp. Zool., 230:473-483 https://doi.org/10.1002/jez.1402300316
  21. Holt WV and North RD. 1986. Thermotropic phase transitions in the plasma membrane of ram spermatozoa. J. Reprod. Fertil., 78:445-457
  22. Holt WV, Head MF and North RD. 1992. Freezeinduced membrane damage in ram spermatozoa is manifested after thawing-observations with experimental cryomicroscopy. Biol. Reprod., 46:1086-1094 https://doi.org/10.1095/biolreprod46.6.1086
  23. Kim TS, Cao Y, Cheong HT, Yang BK and Park CK 2005. Analysis of sperm ability in specific pathogen free miniature pig for production of bio-organ, Reprod. Dev. Bio., 29:149-154
  24. Lee SH, Cheong HT, Yang BK and Park CK. 2005. Development of semen extenders by assessment of sperm viability in miniature pig semen. Reprod. Dev. Bio., 29:247-252
  25. Lin DS, Connor WE, Wolf DP, Neuringer M and Hachey DL. 1993. Unique lipids of primate spermatozoa-desmosterol and docosahexaenoic acid. J. Lipid. Res., 34:491-499
  26. Maxwell WMC and Johnson LA. 1997. Membrane status of boar spermatozoa after cooling or cryopreservation. Theriogenology, 48:209-219 https://doi.org/10.1016/S0093-691X(97)84068-X
  27. Mazur P, Leibo SP, Farrant J, Chu EHY, Hanna MG Jr and Smith LH. 1970. Interactions of cooling rate, warming rate and protective additive on the survival of frozen mammalian cells. In: Wolstenholme GEW, O'Connor M (Eds), The Frozen Cell, Churchill. London. pp. 69-88
  28. Mazur P. 1984. Freezing of living cells: mechanisms and implications. Am. J. Physiol., 247:C125-C142 https://doi.org/10.1152/ajpcell.1984.247.3.C125
  29. Neild DM, Gadella BM, Maria GC, Marcelo H, Miragaya C, Colenbrander B and Aguero A. 2003. Membrane changes during different stages of a freeze thaw protoxol for equine semen cryopreservation. Theriogenology, 59: 1693-1705 https://doi.org/10.1016/S0093-691X(02)01231-1
  30. Parks JE and Lynch DV. 1992. Lipid composition and thermotropic phase behavior of boar, bull, stallion and rooster sperm membranes. Cryobiology, 29: 255-266 https://doi.org/10.1016/0011-2240(92)90024-V
  31. Parks JE, Arion JW and Foore RH. 1987. Lipids of plasma membrane and outer acrosomal membrane from bovine spermatozoa. Biol. Reprod., 37:1249-1258 https://doi.org/10.1095/biolreprod37.5.1249
  32. Perez LJ, Valcarcel A, de las Heras MA, Moses D and Baidassarre H. 1996. Evidence that frozen thawed ram spermatozoa show accelerated capacitation in vitro as assessed by chlortrtracycline assay. Theriogenology, 46:131-140 https://doi.org/10.1016/0093-691X(96)00148-3
  33. Polge C, Salamon S and Wilmut I. 1970. Fertilizing capacity of frozen boar semen following surgical insemination. Vet. Res., 87:424-428
  34. Potter WL, Upton PC and Dunn BL. 1979. Morphological changes as observed by light microscopy of the acrosome of boar spermatozoa subjected to deep freezing. Aust. J. Biol. Sci., 32:575-578 https://doi.org/10.1071/BI9790575
  35. Pursel VG, Johnson LA and Rampacek GB. 1972. Acrosome morphology of boar spermatozoa incubated before cold shock. J. Anim. Sci., 34:278-283 https://doi.org/10.2527/jas1972.342278x
  36. Salamon S and Maxwell WMC. 1995a. Frozen sotorage of ram semen: I Processing, freezing, thawing and fertility after cervical insemination. Anim. Reprod. Sci., 37:185-249 https://doi.org/10.1016/0378-4320(94)01327-I
  37. Salamon S and Maxwell WMC. 1995b. Frozen storage of ram semen: II Causes of low fertility after cervical insemination and methods of improvement. Anim. Reprod. Sci., 38:1-36 https://doi.org/10.1016/0378-4320(94)01328-J
  38. Wang WH, Abeydeera LR, Fraser LR and Niwa K. 1995. Functional analysis using chlortetracycline fluorescence and in vitro fertilization of frozen thawed ejaculated boar spermatozoa incubated in protein-free chemically defined medium. J. Reprod. Fertil., 104:305-313 https://doi.org/10.1530/jrf.0.1040305
  39. Watson PF. 1990. Artificial insemination and the preservation of semen. In: Lamming G (Ed), Marshall's Physiology of Reproduction vol. 2 Churchill Livingstone, Edinburgh, London, pp. 747-869
  40. Watson PF. 1995. Recent developments and concepts in the cryopreservation of spermatozoa and the assessment of their post-thawing function. Reprod. Fertil. Dev., 7:871-891 https://doi.org/10.1071/RD9950871
  41. Westendorf P, Richter L and Tren H 1975. Zurtiefgefri erung von ebersperma. Laborund besamung-sergebnisse mit dem hulsenberger pailletten-verfahre. Dtsch. Tierarztl. Wochenschr., 82:261-267
  42. Wolf DP and Patton PE. 1989. Sperm cryopreservation: state of the art. J. In Vitro Fertil. Embryo. Transfer, 6:325-327 https://doi.org/10.1007/BF01138770
  43. 김성곤, 장현용, 박동헌, 박춘근, 정희태, 김정익, 양부근. 2006. 돼지 정액의 간편 동결 방법 확립과 동결 정액의 융해 후 생존성 평가. 한국동물번식학회지, 30:59-64
  44. 정영호, 서경덕, 김광식, 심금섭, 이장희. 1999. 동결 보존한 돼지정액의 융해조건이 정자의 생존율과 첨체변화에 미치는 효과. 한국수정란이식학회지, 14:131-137