Bridge-type formation of iridium-catalyzed carbon nanofibers across the Gap on MgO substrate and their electrical properties

  • Kim, Kwang-Duk (Department of Electronic Materials Engineering, Silla University) ;
  • Kim, Sung-Hoon (Department of Electronic Materials Engineering, Silla University) ;
  • Kim, Nam-Seok (Department of Electronic Materials Engineering, Silla University)
  • Published : 2006.10.31

Abstract

We could achieve the bridge-type formation of the iridium-catalyzed carbon nanofibers across the gap on the MgO substrate using microwave plasma enhanced chemical vapor deposition method. On the plane surface area of the MgO substrate, the iridium-catalyzed carbon nanofibers were grown as a lateral direction to the substrate. The bridge-type formation and/or the lateral growth of the iridium-catalyzed carbon nanofibers were interconnected with each other. Finally, they could form an entangled network having the bridge-type formation of the carbon nanofibers across the gap on the substrate and the laterally-grown carbon nanofibers on the plane surface area of the substrate. The entangled network showed the semiconductor electrical characteristics.

Keywords

References

  1. S.J. Tans, M.H. Devoret, H. Dai, A. Thess, R.E. Smalley, L.J. Geerligs and C. Dekker, 'Individual single-wall carbon nanotube as quantum wires', Nature 386 (1997) 474 https://doi.org/10.1038/386474a0
  2. M.S. Kim, W.J. Woo, H.S. Song, Y.S. Lim and J.C. Lee, 'Characterization of nanostructures and electronic properties of catalytically grown carbon nanofiber', J. Kor. Ceram. Soc. 37 (2000) 345
  3. L. Marty, V. Bouchiat, A.M. Bonnot, M. Chaumont, T. Foutnier, S. Decossas and S. Roche, 'Batch processing of nanometer-scale electrical circuitry based on in-situ grown single-walled carbon nanotubes', Microelectronic Engineering 61-62 (2002) 485 https://doi.org/10.1016/S0167-9317(02)00487-2
  4. M. Knupfer, 'Electron properties of carbon nanostructures', Surface Science Reports 42 (2001) 1
  5. R. Ma, C.L. XU, B.Q. Wei, J. Liang, D.H. Wu and D. Li, 'Electrical conductivity and field emission characteristics of hot-pressed sintered carbon nanotubes', Mater. Res. Bull. 34 (1999) 741 https://doi.org/10.1016/S0025-5408(99)00064-1
  6. S.-H. Kim, 'Growth of nickel-catalyzed carbon nanofibers using MPCVD method and their electrical properties', J. Kor. Cryst. Growth & Cryst. Tech. 14 (2004) 1-5
  7. Y. Xu, B. Higgins and W.J. Brittain, 'Bottom-up synthesis of PS-CNF nanocomposites', Polymer 46 (2005) 799 https://doi.org/10.1016/j.polymer.2004.11.091
  8. Y-T. Jang, J.-H. Ahn, B.-K. Ju and Y-H. Lee, 'Lateral growth of aligned mutilwalled carbon nanotubes under electric field', Solid-state Communications 126 (2003) 305 https://doi.org/10.1016/S0038-1098(03)00164-9
  9. S. Zhu, C.-H. Su, J.C. Cochrane, S. Lehoczky, Y Cui and A. Burger, 'Growth orientation of carbon nanotubes by thermal chemical vapor deposition', J. Cryst. Growth 234 (2002) 584 https://doi.org/10.1016/S0022-0248(01)01709-2
  10. T. Kikuchi, T. Maruyama, T. Fujii, T. Kobayashi, S.-H. Kim, D.D. Kim and S.K. Lee, 'The manipulation of the carbon nanofibers growth into lateral or vertical directin with respect to the substrate synthesized with iridium catalyst', Thin Solid Films 503 (2006) 219 https://doi.org/10.1016/j.tsf.2005.12.046
  11. S.-H. Kim, 'Selective growth of the carbon nanofibers at the groove area of the MgO substrate by the iridium catralyst', J. Kor. Ceram. Soc. 41 (2004) 880 https://doi.org/10.4191/KCERS.2004.41.12.880
  12. A. Bachtold, M. Henny, C. Terrier, C. Strunk, C. Schonenberger, J.P. Salvetat, J.M. Bonard and L. Forro, 'Contacting carbon nanotubes selectively with low ohmic contacts for four-probe electric measurements', Appl. Phys. Lett. 73 (1998) 274 https://doi.org/10.1063/1.121778
  13. H. Dai, J. Kong, C. Zhou, N. Franklin, T. Tombler, A. Cassel, S. Fan and M.J. Chapline, 'Controlled chemical routes to nanotube architectures, physics, and devices', J. Phys. Chem. B 103 (1999) 11246
  14. C. Bower, W. Zhu, J. Sungho and O. Zhou, 'Plasmainduced alignment of carbon nanotubes', Appl. Phys. Lett. 77 (2000) 830 https://doi.org/10.1063/1.1306658
  15. S.-H. Kim, 'Competitive growth of carbon naotubes versus carbon nanofibers,' J. Kor. Ceram. Soc. 40 (2003) 1150 https://doi.org/10.4191/KCERS.2003.40.12.1150