Land Cover Classification of Image Data Using Artificial Neural Networks

인공신경망 모형을 이용한 영상자료의 토지피복분류

  • Kang, Moon-Seong (Department of Biosystems Engineering, Auburn University) ;
  • Park, Seung-Woo (Department of Rural System Engineering, Seoul National University) ;
  • Kwang, Sik-Yoon (Department of Biosystems and Agricultural Engineering, Chonnam National University)
  • 강문성 (어번대학교 생물시스템공학과) ;
  • 박승우 (서울대학교 지역시스템공학과) ;
  • 윤광식 (전남대학교 생물산업공학과)
  • Published : 2006.03.25

Abstract

본 연구에서는 최대우도법과 인공신경망 모형에 의해 카테고리 분류를 수행하고 각각의 분류 성능을 비교 평가하였다. 인공신경망 모형은 오류역전파 알고리즘을 이용한 것으로서 학습을 통한 은닉층의 최적노드수를 결정하여 카테고리 분류를 수행하도록 하였다. 인공신경망 최적 모형은 입력층의 노드수가 7개, 은닉층의 최적노드수가 18개, 그리고 출력층의 노드수가 5개인 것으로 구성하였다. 위성영상은 1996년에 촬영된 Landsat TM-5 영상을 사용하였고, 최대우도법과 인공신경망 모형에 의한 카테고리 분류를 위하여 각각의 카테고리에 대한 분광특성을 대표하는 지역을 절취하였다. 분류 정확도는 인공신경망 모형에 의한 방법이 90%, 최대우도법이 83%로서, 인공신경망 모형의 분류 성능이 뛰어난 것으로 나타났다. 카테고리 분류 항목인 토지 피복 상태에 따른 분류는 두 가지 방법에서 밭과 주거지의 분류오차가 큰 것으로 나타났다. 특히, 최대우도법에 의한 밭에서의 태만오차는 62.6%로서 매우 큰 값을 보였다. 이는 밭이나 주거지의 특성이 위성영상 촬영시기에 따라 나지의 형태로 분류되거나 산림, 또는 논으로도 분류되는 경향이 있기 때문인 것으로 보인다. 차후에 카테고리 분류를 위한 각각의 클래스의 보조적인 정보를 추가한다면, 카테고리 분류 향상이 이루어질 것으로 기대된다.

Keywords

References

  1. Atkinson, P. M. and A. R. L., 1997, Neural Networks in Remote Sensing. Int. J. Remote Sens. 18(4) : 699-709 https://doi.org/10.1080/014311697218700
  2. Berberoglu, S., C. D. Lloyd, P. M. Atkinson, and P. J. Curran, 2000, The integration of Special and Textural Information Using Neural Networks for Land Cover Mapping in the Mediterranean. Comput. Geosci. 26 : 385-396 https://doi.org/10.1016/S0098-3004(99)00119-3
  3. Bruzzone, L. and D. F. Prieto, 1999, An Incremental-Learning Neural Network for the Classification of Remote-Sensing Images. Pattern Recognition 20 : 1241-1248 https://doi.org/10.1016/S0167-8655(99)00091-4
  4. Chang, D. H. and S. Islam, 2000, Estimation of Soil Physical Properties Using Remote Sensing and Artificial Neural Network. Remote Sens. Environ., 74(3) : 534-544 https://doi.org/10.1016/S0034-4257(00)00144-9
  5. Chen, Z., T. J. Feng, and Z. Houkes, 1999, Texture Segmentation Based on Wavelet and Kohonen Network for Remote Sensed Images. In: IEEE-SMC Conf., 6 : 816-821
  6. Del Frate, F., P. Ferrazzoli, and G. Schiavon, 2003, Retrieving Soil Moisture and Agricultureal Variables by Microwave Radiometry Using Neural Networks. Remote Sens. Environ., 84(2) : 174-183 https://doi.org/10.1016/S0034-4257(02)00105-0
  7. Drummond, S. T., K. A. Sudduth, A. Joshi, S. J. Birrell, and N. R. Kitchen, 2003, Statistical and Neural Methods for Site-Specific Yield Prediction. Trans. ASAE 46(1) : 5-14
  8. Foody, G. M., D. S. Boyd, and M. E. J. Cutler, 2003, Predictive Relations of Tropical Forest Biomass form Landsat TM Data and Their Transferability Between Regions. Remote Sensing of Environment, 85 : 463-474 https://doi.org/10.1016/S0034-4257(03)00039-7
  9. Giacinto, G., F. Roli, and L. Bruzzone, 2000, Combination of Neural and Statistical Algorithms for Supervised Classification of Remote-Sensing Images. Pattern Recognition Lett., 21 : 385-397 https://doi.org/10.1016/S0167-8655(00)00006-4
  10. Gomez, H., 2002, Modeling Landslide Potential in the Venezuela Andes. PhD Thesis, The University of Nottingham, UK
  11. Gomez, H. and T. Kavzoglu, 2005, Assesment of Shallow Landslide Susceptibility Using Artificial Neural Networks in Jabonosa River Basin, Venezuela. Engineering Geology, 78 : 11-27 https://doi.org/10.1016/j.enggeo.2004.10.004
  12. Gross, L., S. Thiria, and R. Frouin, 1999, Applying Artificial Neural Network Methodology to Ocean Color Remote Sensing. Ecological Modelling, 120 : 237-246 https://doi.org/10.1016/S0304-3800(99)00105-2
  13. Haykin, S., 1994, Neural Networks: A Comprehensive Foundation. Upper Saddle River, NJ: Prentice Hall
  14. Hsu, K. H., H. V. Gupta, and S. Sorooshian, 1995, Artificial Neural Network Modeling of the Rainfall-Runoff Process. Water Resour. Res. 31(10) : 2517-2530 https://doi.org/10.1029/95WR01955
  15. Hyyppa, J., H., Hyyppa, M. Inkinen, M. Engdahl, S. Linko, and Y. H. Zhu, 2000, Accuracy Comparison of Various Remote Sensing Data Sources in The Retrieval of Forest Stand Attributes. Forest Ecology and Management, 128 : 109-120 https://doi.org/10.1016/S0378-1127(99)00278-9
  16. Ingram, J. C., T. P. Dawson, and R. J. Whittaker, 2005, Mapping Tropical Forest Structure in Southeastern Madagascar Using Remote Sensing and Artificial Neural Networks. Remote Sensing of Environment, 94 : 491-507 https://doi.org/10.1016/j.rse.2004.12.001
  17. Jensen, J. R., F. Qiu, and M. H. Ji, 1999, Predictive Modelling of Coniferous Forest Age Using Statistical and Artificial Neural Network Approaches Applied to Remote Sensor Data. International Journal of Remote Sensing, 20 : 2805-2822 https://doi.org/10.1080/014311699211804
  18. Jozwik, A., S. Serpico, and F. Roli, 1998, A Parallel Network of Modified 1-NN and $\kappa$-NN Classifiers Application to Remote-Sensing Images Classification. Pattern Recognition Lett., 19 : 57-62 https://doi.org/10.1016/S0167-8655(97)00155-4
  19. Kanellopoulos, I., G. G. Wilkinson, and J. Megier, 1993, Integration of Neural Network and Statistical Image Classification for Land Cover Mapping. Proceedings of the International Geoscience and Remote Sensing Symposium IGARSS '93, Kogakuin University, Tokyo, Japan, 18-21 August
  20. Kang, M. S., and S. W. Park. 2003, Short-Term Flood Forecasting Using Artificial Neural Networks. J. of the Korea Society of Agricultural Engineers (KSAE) 45(2) : 45-57 (In Korean)
  21. Kang, M. S., M. G. Kang, S. W. Park, J. J. Lee, and K. H. Yoo, 2006a, Application of Grey Model and Artificial Neural Networks to Flood Forecasting. J. of American Water Resources Association (JAWRA). In press
  22. Kang, M. S., S. W. Park, J. J. Lee, and K. H. Yoo. 2006b, Appling SWAT for TMDL Programs to a Small Watershed Containing Rice Paddy Fields. Agricultural Water Management 79(1) : 72-92 https://doi.org/10.1016/j.agwat.2005.02.015
  23. Keiner, L. E. and X. H. Yan, 1998, A Neral Network Model for Estimating Sea Surface Chlorophyll and Sediments from Thematic Mapper Imagery. Remote Sens. Enviorn., 66 : 153-165 https://doi.org/10.1016/S0034-4257(98)00054-6
  24. Kurnaz, N. M., Z. Dokur, and T. Olmez, 2005, Segmentaton of Remote-Sensing Image by Incremental Neural Network. Pattern Recognition Letters, 26 : 1096-1104 https://doi.org/10.1016/j.patrec.2004.10.004
  25. Lillesand, T. M., and R. W. Kiefer, 1994, Remote Sensing and Image Interpretation. Third Edition, John Wiley & Sons, Inc
  26. Liu, J., C. E. Goering, and L. Tian, 2001, A Neural Network for Setting Target Com Yields. Trans. ASAE 44(3) : 705-713
  27. Liu, X. H., A. K. Skimore, and H. V. Oosten, 2002, Integration of Classification Methods for Improvement of Land-Cover Map Accuracy. Photogrammetry and Remote Sensing, 56 : 257-268 https://doi.org/10.1016/S0924-2716(02)00061-8
  28. Mar, J. F., 2004, Mapping Land Use/Cover in a Tropical Coastal Area using Satellite Sensor Data, GIS and Artificial Neural Networks. Estuarine Coastal and Shelf Science, 59 : 219-230 https://doi.org/10.1016/j.ecss.2003.08.011
  29. Matsuyama, T., 1987, Knowledge-Based Aerial Image Understanding Systems and Expert Systems for Image Processing. IEEE Transactions on Geoscience and Remote Sensing GE-25(3) : 305-316 https://doi.org/10.1109/TGRS.1987.289802
  30. Nash, J.E. and J. V. Sutcliffee, 1970, River Flow Forecasting through Conceptual Models, Journal of Hydrology 10 : 282-290 https://doi.org/10.1016/0022-1694(70)90255-6
  31. Paola, J. D., and R. A. Schowengerdt, 1995, A Detailed Comparison of Backpropagation Neural Network and Maximum-Likelihood Classifiers for Urban Land Use Classification, IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 33(4) : 981-996 https://doi.org/10.1109/36.406684
  32. Phien, H. N. and S. Sureerattanan, 2000, Neural Networks for Filtering and Forecasting of Daily and Monthly Streamflows, Hydrologic Modeling, 203-218
  33. Rissanen, J., 1978, Modeling by Short Data Description, Automation, 14 : 465-471 https://doi.org/10.1016/0005-1098(78)90005-5
  34. Serpico, S. B., L. Bruzzone, and F. Roli, 1996, An Experimental Comparison of Neural and Statistical Non-Parametric Algorithms for Supervised Classification of Remote-Sensing Images. Pattern Lett., 17 :1331-1341 https://doi.org/10.1016/S0167-8655(96)00090-6
  35. Simpson, G., 1994, Crop Yield Prediction Using a CMAC Neural Network. In: Proceedings of the Society of Photo-optical Instrumentation Engineers, 2315 : 160-171
  36. Uno, Y., S. O. Prasher, R. Lacroix, P. X. Goel, Y. Karimi, A. Viau, and R. M. Patel, 2005, Artificial Neural Networks to Predict Com Yield from Compact Airborne Spectrographic Imager Data. Computers and Electronics in Agriculture, 47 : 149-161 https://doi.org/10.1016/j.compag.2004.11.014
  37. Villmann, T., E. Merenyi, and B. Hammer, 2003, Neural Map in Remote Sensing Image Analysis. Neural Networks, 16 : 389-403 https://doi.org/10.1016/S0893-6080(03)00021-2
  38. Zhang, Y., J. Pullianinen, S. Koponen, and M. Hallikainen, 2002, Application of an Empirical Neural Network to Surface Water Quality Estimation in the Gulf of Finland Using Combined Optical Data and Microwave Data. Remote Sens. Environ., 81(2-3) : 327-336 https://doi.org/10.1016/S0034-4257(02)00009-3