Physical Properties and Flame Retardency of Polyhydroxyamides (PHAs) Having Pendant Groups in the Main Chain

주사슬에 곁사슬기를 갖는 폴리히드록시아미드의 물성 및 난연특성

  • Yoon, Doo-Soo (Department of Polymer Science & Engineering, Chosun University) ;
  • Choi, Jae-Kon (Department of Polymer Science & Engineering, Chosun University) ;
  • Jo, Byung-Wook (Department of Chemical Engineering, Chosun University)
  • 윤두수 (조선대학교 공과대학 고분자공학과) ;
  • 최재곤 (조선대학교 공과대학 고분자공학과) ;
  • 조병욱 (조선대학교 공과대학 생명화학공학과)
  • Published : 2006.11.30

Abstract

Physical properties and flammability of polyhydroxyamides (PHAs) haying poly (ethylene-glycol) methyl ether (MPEG) and/or dimethylphenoxy pendants were studied by using DSC, TGA, FTIR, pyrolysis combustion flow calorimeter (PCFC), and X-ray diffractometer. The degradation temperatures of the polymers were recorded in the ranges of $276{\sim}396^{\circ}C$ in air. PCFC results showed that the heat release (HR) capacity and total heat release (total HR) values of the PHAs were increased with in-creasing molecular weight of MPEG. In case of M-PHA 2 annealed at $290^{\circ}C$, the values of HR capacity were siginificantly decreased from 253 to 42 J/gK, and 60% weight loss temperatures increased from 408 to $856^{\circ}C$ with an annealing temperature. The activation energy for the decomposition reaction of the PHAs showed in the range of $129.3{\sim}235.1kJ/mol$, which increased with increasing conversion. Tensile modulus of PHAs were decreased as increasing chain of MPEG, and showed an increase more than initial modulus after converted to PBOs.

폴리(에틸렌글리콜)메틸에테르[poly (ethyleneglycol)nlethyl ether, MPEG] 곁사슬기와 짧고 강직한 디메틸페녹시(dimethylphenoxy) 곁사슬기를 갖는 폴리히드록시아미드(poly (hydroxyamide)s, PHAs)의 물성 및 난연특성을 DSC, TGA, FTIR, pyrolysis combustion flow calorimeter(PCFC), X-ray diffractometer를 사용하여 조사하였다. 중합체들의 최대분해온도는 공기 분위기하에서 $276{\sim}396^{\circ}C$의 범위를 보였다. PHAs의 heat release (HR) capacity와 total heat release (total HR) 값들은 MPEG의 분자량 증가에 따라 증가됨을 보였다. $290^{\circ}C$에서 열처리된 M-PHA 2의 경우 열처리 시간에 따라서 HR capacity 값들은 253 J/gK에서 42 J/gK로 감소하였고, 60% 중량 감소 온도는 $408^{\circ}C$에서 $856^{\circ}C$로 증가하였다. PHAs의 분해 활성화 에너지는 $129.3{\sim}235.1kJ/mol$의 범위를 보이고, 전환율에 따라 증가하였다. PHAs의 인장 모듈러스는 MPEG의 사슬길이가 증가함에 따라 감소하였으며, PBO로 전환된 후에는 초기 모듈러스보다 더 상승하였다.

Keywords

References

  1. C. E. Stroog, Preg. Polym, Sci., 16, 561 (1991) https://doi.org/10.1016/0079-6700(91)90010-I
  2. M. K. Ghosh and K. L. Mittal, Polyimides, Marcel Dekker, New York, 1996
  3. J. F. Wolfe and F. E. Arnold, Macromolecules, 14, 909 (1981) https://doi.org/10.1021/ma50005a004
  4. J. F. Wolfe, F. E. Arnold, and B. H. Loa, Macromolecules, 14, 915 (1981) https://doi.org/10.1021/ma50005a005
  5. M. E. Hunsaker, G. E. Price, and S. J. Bai, Polymer, 33, 2128 (1992) https://doi.org/10.1016/0032-3861(92)90879-2
  6. R. E. Lyon, PMSE, 71, 26 (1994)
  7. Y. Imai, K. Itaya, and M.-A. Kakimoto, Macromol. Chem. Phys., 17, 201 (2000)
  8. D. H. Baik, E. K. Kim, and M. K. Kim, J. of the Korean Fiber Society, 40, 13 (2003)
  9. H. Zhang, R. J. Farris, and P. R. Westmoreland, Macromolecules, 36, 3944 (2003) https://doi.org/10.1021/ma021764x
  10. M. F. Angel, A. E. Lozano, J. D. Abajo, and J. G. Campa, Polymer, 42, 7933 (2001) https://doi.org/10.1016/S0032-3861(01)00316-0
  11. S.-H. Hsiao and C.-H. Yu, Macromol. Chem. Phys., 199, 1247 (1998) https://doi.org/10.1002/(SICI)1521-3935(19980701)199:7<1247::AID-MACP1247>3.0.CO;2-Y
  12. S.-H. Hsiao and L. R. Dai, J. Polym. Sci.; Part A : Polym. Chem., 37, 2129 (1998) https://doi.org/10.1002/(SICI)1099-0518(19990701)37:13<2129::AID-POLA28>3.0.CO;2-O
  13. S.-H. Hsiao and Y. H. Huang, Eur. Polym. J., 40, 1127 (2004) https://doi.org/10.1016/j.eurpolymj.2004.01.011
  14. R. J. Farris and B. W. Jo, CUMIRP Report(Univ. Mass.), part 1 (1997)
  15. G. S. Liou and S.-H. Hsiano, Macromol. Chem. Phys., 201, 42 (2000) https://doi.org/10.1002/(SICI)1521-3935(20000101)201:1<42::AID-MACP42>3.0.CO;2-H
  16. M. P. Stevens, Polymer Chemistry An Introduction, Ixfird Yniversity Press, New York, 1990
  17. R. N. Walters and R. E. Lyon, J. Appl. Polym. Sci., 87, 548 (2003) https://doi.org/10.1002/app.11466
  18. R. N. Walters and R. E. Lyon, J. Anal. Appl. Pyrolysis, 71, 27 (2004) https://doi.org/10.1016/S0165-2370(03)00096-2
  19. J. H. Jang and R. J. Faris, Polym. Eng. Sci., 39, 638 (1999) https://doi.org/10.1002/pen.11453
  20. D. S. Yoon, J. K Choi, and B. W. Jo, Polymer(Korea), 29, 493 (2005)
  21. R. Duran, M. Ballauff, M. Wenzel, and G. Wegner, Macromolecules, 21, 2897 (1988) https://doi.org/10.1021/ma00187a045
  22. K S. Lee, H. M. Kim, J. M. Rhee, and S. M. Lee, Makromol. Chem., 192, 1033(1991) https://doi.org/10.1002/macp.1991.021920502
  23. Y.-H. Hu and C.-Y. Chen, Polym. Degrad. Stab., 80, 1 (2003) https://doi.org/10.1016/S0141-3910(02)00375-0
  24. K. Mequanint, R. Sanderson, and H. Pasch, Polym. Degrad. Stab., 77, 121 (2002) https://doi.org/10.1016/S0141-3910(02)00088-5
  25. H. Zhao, Y.-Z.wang, D.-Y. Wang, B. Wu, D.-Q. Chen, X.-L. Wang, and K.-K. Yang, Polym. Degrad. Stab., 80, 135 (2003) https://doi.org/10.1016/S0141-3910(02)00394-4
  26. S. S. Kim and Y. J. Chung, J. Korean Ind. Eng. Chem., 14, 793 (2003)
  27. T. Kubota and R. Nakanish, Polym. Sci., Part B, 2, 655 (1964) https://doi.org/10.1002/pol.1964.110020619